FEITIAN

= 8 B

Rockey4ND
User’s Guide

Vi1l

Feitian Technologies Co., Ltd.

Website: www.FTsafe.com

FEITIAN

Revision History:

Rockey4ND User’s Guide

Date

Revision

Description

FEITIAN Rockey4ND User’s Guide

Software Developer’s Agreement

All Products of Feitian Technologies Co., Ltd. (Feitian) including, but not limited to, evaluation copies, diskettes,
CD-ROMs, hardware and documentation, and all future orders, are subject to the terms of this Agreement. If you do
not agree with the terms herein, please return the evaluation package to us, postage and insurance prepaid, within
seven days of their receipt, and we will reimburse you the cost of the Product, less freight and reasonable handling

charges.

1. Allowable Use — You may merge and link the Software with other programs for the sole purpose of protecting
those programs in accordance with the usage described in the Developer’s Guide. You may make archival copies

of the Software.

2. Prohibited Use — The Software or hardware or any other part of the Product may not be copied, reengineered,
disassembled, decompiled, revised, enhanced or otherwise modified, except as specifically allowed in item 1.
You may not reverse engineer the Software or any part of the product or attempt to discover the Software’s
source code. You may not use the magnetic or optical media included with the Product for the purposes of
transferring or storing data that was not either an original part of the Product, or a Feitian provided enhancement

or upgrade to the Product.

3. Warranty — Feitian warrants that the hardware and Software storage media are substantially free from significant
defects of workmanship or materials for a time period of twelve (12) months from the date of delivery of the

Product to you.

4. Breach of Warranty — In the event of breach of this warranty, Feitian’s sole obligation is to replace or repair, at the

discretion of Feitian, any Product free of charge. Any replaced Product becomes the property of Feitian.

Warranty claims must be made in writing to Feitian during the warranty period and within fourteen (14) days after the
observation of the defect. All warranty claims must be accompanied by evidence of the defect that is deemed
satisfactory by Feitian. Any Products that you return to Feitian, or a Feitian authorized distributor, must be sent with

freight and insurance prepaid.

EXCEPT AS STATED ABOVE, THERE IS NO OTHER WARRANTY OR REPRESENTATION OF THE PRODUCT, EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

5. Limitation of Feitian’s Liability — Feitian’s entire liability to you or any other party for any cause whatsoever,
whether in contract or in tort, including negligence, shall not exceed the price you paid for the unit of the Product
that caused the damages or are the subject of, or indirectly related to the cause of action. In no event shall
Feitian be liable for any damages caused by your failure to meet your obligations, nor for any loss of data, profit or
savings, or any other consequential and incidental damages, even if Feitian has been advised of the possibility of

damages, or for any claim by you based on any third-party claim.

FEITIAN Rockey4ND User’s Guide

6. Termination — This Agreement shall terminate if you fail to comply with the terms herein. Items 2, 3, 4 and 5

shall survive any termination of this Agreement.

FEITIAN Rockey4ND User’s Guide

Quick Start

B The ROCKEY4ND evaluation kit is provided to developers for trial purpose. It includes the product package,
documentation, CD-ROM, extension cable, and dongle. The dongle is the same as the formal dongle, except that
the access password for it is public (P1: C44C, P2: C8F8, P3: 0799, P4: C43B). If customers want to purchase the

product after evaluation, a dongle with a unique password will be provided for security consideration.

M To install ROCKEY4ND SDK, run Setup.exe in the kit, with which you can finish the installation of the SDK
through a wizard. For details, see Chapter 3 ROCKEY4ND SDK.

M You can find the dongle editor Rockey4ND_Editor.exe under Editor directory in Utilities directory of the
SDK. You can modify, test, or write to the dongle using this tool. For details, see Chapter 5 ROCKEY4ND Editor.

M An envelope encryption tool Envelope.exe is also provided under Envelope directory of the SDK. You can
encrypt Windows PE files, .Net files, and data files using this tool, simply by clicking on the target file and related
functions. For details, see Chapter 6 ROCKEYAND Envelope Encryption.

M By incorporating the ROCKEY4ND API into your applications to be protected, you can get the most out of
the dongle with the highest level of security. For details, see Chapter 7 ROCKEY4ND APIs.

M You can find some frequently asked questions and the answers in Chapter 9.

M For updates and any other things you are interested in, visit us at http://www.FTsafe.com.

FEITIAN Rockey4ND User’s Guide

Contents
(0 =11 =T g SR [4 o 7o [Tt 4o Y o J O ONN 1
Y o Yo TU 1 2 (0 10 2 21 V1 5 TN 1
1.2 Software Protection Mechanism of ROCKEYANDueeiiiiiiiiiiieeeeee e eeeeitte e eeearee e e e e e eesareeeeeesesennsaaaeneee s 1
1.3 Hardware CONFIGUIALION ...cc.eeiee ettt e e et e e et e e e e ta e e e e ataeeeessteeeensaeeaensaeeeennsaessnnsens 2
(0 L0 T (VD I =TT = 1 S 2
1.5 How to Choose a Right Software Protection SOIULIONcceeiieciieeieiiee et 2
Chapter 2. ROCKEYAND HardWare FEAtUIEScccceeuiiieeiiieniieeneiieneiennerenncreescrenseresssassssassssnssssnssssnssssnsasensanen 4
2.1 ROCKEYAND INtEINAI STrUCTUIE ...t ssssssssssssssnssssssssnnnnnns 4
2.2 ROCKEYAND HardWare INEEITACEuue s s s ssnnssssnssnnnnnns 4
Chapter 3. Installing ROCKEYAND SDKcccoitttimuuiiiiiiiiiimeesiiiniiiiesmsesssissiieessssssssssssmsessssssssssssmsssnsssssssssan 5
T 1T 7= 11 1T = 0]] S 5
I A U 111 7 1 T =) S 8
Chapter 4. BasiC CONCEPLS...c.ciiiieiiiiireiiiitiieittresiertenssestenesiereenssesrensssesssnsssssenssssssnnssssssnsssssensssssesnssssssnassenes 9
L R S T o e KRR 9
L 1o 1< g 6o Yo [T 9
LR 1o LV Y= T =3 | R 9
R LT D | = [o] o LI ORIt 9
LN 1Y, (oY L] Lo o V=T 9
F o N WY AN FJo T 1 o' ¢ 17 o [RS 10
L AU =T ol | D LSOO UURPPURRRPPRNS 10
Lo 2= TaTe [0 T AV TU T] o L= R 10
L Y =Y=Yo BT 0 Lo I TN (0T o TV 1 (VTSR 10
Chapter 5. ROCKEYAND EdItOrccceeeeuiiiiiiiiiiiieiiiniiineeieeeiessineessnessssessrsesssssssssessssnsnssssssssssessnnnssssssssnns 11
LI R = T3 B 2L oY 1T o o o TR 11
ST @ o = ¢ 1 o T 14
LI BT VLA o N 17
Chapter 6. ROCKEY4ND Envelope ENCryption..........ccciiiiiiiieeeiiiiniiiiriieiiinnineesnsessessnsessssssssssssssssssssssssssnns 21
Chapter 7. ROCKEYAND APIS......cccciiieiiteeiteeireeieneteenerensesessersssersnsssassssassssassssnssssnssssnssssnssssnssssnssssnssssnnens 28
7.1 ROCKEYAND Function Prototype and DefinitioN.........ccceeieiiuieeeeiirieeceiree e cccieee e e eetreeeesreeeeeenreeeeeneeeeennns 28
7.2 ROCKEYZIND AP SEIVICES .. s s s s s ss s s s ssssssssssssssssssssssssssnsnsssnnnssnsnnnnns 30
8 T 4 o) o O Yo LT3R 35
VRN T Y ol Vo] o] [or=Y 4o o I 20T Y][USRS 36
7.5 Advanced Application EXAMPIEScoouiieiiiiie ettt e e e et e e et e e e et e e e st e e s ennra e e e entaeeenneeeeenns 58
Chapter 8. ROCKEY4ND Hardware AlZOrithmsccoiiiiiiieiiiiiiiiiiiiieiiiiniinncneescsnnreessneessss e ssaassssssens 89
8.1 ROCKEY User Defined Algorithm INtrodUCHiON..........uvi i e e ree e 89
8.2 User Defined AlIZOrithm EXAMIPIESceiccuvieiieieee ettt ettt et e eree e eetree e e traeeeesreeeeennseeesnnseeeessseeeens 94
< E T T LSS 128
(61T o1 0= = T 71 V0 LR 130
9.1 Typical SOlUtiONS t0 SOME ProDIEMSeeiiiii ettt e e e e e e e e e e e e sarr e e e e e e e eennsaaaeeeeennen 130

9.2 FAQIS ettt e e b bR a e s e e e 130

FEITIAN Rockey4ND User’s Guide

Chapter 1. Introduction

1.1 About ROCKEY4ND

ROCKEYAND is an advanced software protection system that attaches to the USB port of a computer. Your
software may be duplicated, but it will only run when your ROCKEYAND “dongle” is attached to the computer. It
can also limit the use of your software. Your application will interact with ROCKEY4AND at start-up and during
runtime. If the dongle has been removed, or if an application module has been accessed a preset number of times,
it can issue an error message and terminate, or take other alternative actions to ensure compliance with your
licensing agreement. ROCKEY4ND is versatile and can be applied to other scenarios as required.

Unlike some competing products, ROCKEY4AND is a powerful miniature computer, with a CPU, memory and
specialized firmware built-in that allows for a robust interaction with your application. You may write complex
algorithms that are securely stored in the dongle, and then call those algorithms from time-to-time in your
application. This method for software protection is strongly recommended and is very difficult to crack, and
although ROCKEY4AND was designed to implement extremely high levels of security - it is also relatively easy to
implement. The ROCKEY4ND API set has been simplified and improved based on experience gained from earlier

versions.

The ROCKEY4AND product also includes an Envelope encryption tool - Envelope.exe for encrypting Windows
Portable Executable files (such as .dll, .exe and .arx), .Net file, and data files. It is very easy to use. Only a few
seconds will be taken to encrypt a file. The ROCKEY4AND Envelope tool is an ideal solution if you do not possess
the source code for your application, or are unfamiliar with implementing an API. A security system that combines
both the API set and the Envelope program will offer the greatest level of protection.

There are several components to the ROCKEY4AND software security solution and each of them will be discussed in
this document. The following is an overview of the ROCKEYAND components, along with a reference to where

they will be discussed in this document:

e The ROCKEY4ND Envelope program (Envelope.exe) is a fast and convenient means of
encrypting .exe, .dll, .arx and other Portable Executable (PE) files. This solution is ideal if you do not have
access to source code or you are not familiar with the ROCKEYAND API set. (See Chapter 6: ROCKEY4ND
Envelope Encryption)

e The ROCKEY4AND Editor (Rockey4ND_Editor.exe) is a graphical tool for performing operations on the
dongle. The Editor may be used to read data from and write data to the dongle, perform arithmetic
operations in the dongle or test the dongle for malfunctions. (See Chapter 5: ROCKEY4ND Editor)

e ROCKEY4AND has an API set that you may use to create flexible and powerful software protection systems.
This document provides VC ++ examples and other examples are provided on the CD-ROM under Samples
directory. (See Chapter 7: ROCKEY4ND APIs)

1.2 Software Protection Mechanism of ROCKEY4ND

FEITIAN Rockey4ND User’s Guide

The protected software application must call the ROCKEYAND dongle during run time, since the application is
dependant on the hardware. It is impossible to duplicate the chipset of the ROCKEY4AND hardware, and so too it is
impossible to duplicate your software, ensuring your software is protected from piracy.

1.3 Hardware Configuration

User memory is divided into 2 parts. The size of each is 500 bytes. The length of the algorithm area is 128 units.

The number of the modules is 64.

1.4 ROCKEY4ND Benefits

1. Compact Design — The dongle is compact and portable.

2. High Speed -- ROCKEY4AND was designed to process even very complex algorithms with minimal delay for
your application. Users will typically notice no degradation in application performance as a result of ROCKY4ND
being implemented.

3. Ease of Use — ROCKY4AND’s reduced API set simplifies the programming effort in implementing API calls
within your code, and the Envelope program has also been improved for increased security with the release of
ROCKEY4AND. Developers lead time in implementing ROCKEY4AND is vastly reduced, saving both time and costs
in deploying security into your software.

4. High Security Levels — Redesigned ROCKEY4ND offers a much higher level of security over previous version.
ROCKEY4AND implements a two level security system to segregate users who require read only access from those
who require administrative privileges. ROCKEYAND has a built in time gate to prevent software tracking and is
powerful enough to support developer defined algorithms that brings software protection to a new level of
security.

5. High Reliability — FEITIAN employs an advanced customers managing system for ROCKEY4ND. We guarantee
that the password of every customer is unique and that the hardware ID of every dongle is also unique. The
password

and hardware ID are burnt into the CPU, it is absolutely impossible to change, even for us—the manufacturer.
6. Broad Support for Operating Systems -- ROCKEY4ND protected applications may run on: Windows

98 SE/ME/2000 /XP/2003; Linux; MAC.

7. Abundant Programming Language Interfaces -- ROCKEY4ND provides interfaces for these common
development tools: PB, DELPHI, VFP, VB, VC, C++ BUILDER and etc.

1.5 How to Choose a Right Software Protection Solution

The protection level applied to software not only depends on the dongle, but also on how the developer uses the
dongle. Even if the dongle is the best in the world, a rudimentary implementation of security with your dongle can
render the total security solution weak. ROCKEY4ND dongles offer two protection methods: envelope encryption
and API encryption.

You may invoke the program Envelope.exe under Envelope directory of the SDK to perform the envelope
encryption function. As the name indicates, envelope encryption adds an envelope to the user’s designated files
to protect them. The envelope will call the dongle. When users execute the program protected by the envelope,

FEITIAN Rockey4ND User’s Guide

the protected program will automatically call the ROCKEY4AND and decide whether to allow the program to
continue according to the results of the call. The envelope program directly encrypts the compiled files. The
advantage of envelope encryption is that it is very easy and quick to implement and the source code does not
need to be modified. The envelope method is the ideal choice if there is no time for learning the APl method or if
the source code is lost or unavailable. The disadvantage is that an envelope program uses a rule based encryption
method, and rule based encryption methods are not as strong as methods that use an encryption key. Also,
envelope encryption cannot support script languages that cannot be compiled, such as VBA.

For APl encryption, developers need to choose the appropriate language interface according to their
programming language to access the dongle. APl encryption was designed to be flexible; so you can make full use
of the encryption functions of ROCKEY4AND. Developers can decide where and how to encrypt their software. API
encryption is more secure than envelope encryption and especially so when the internal algorithm function of
ROCKEY4AND is utilized. But APl encryption must work with the original program and it can take the developer
more time to become familiar with the API.

FEITIAN Rockey4ND User’s Guide

Chapter 2. ROCKEY4ND Hardware Features

2.1 ROCKEYAND Internal Structure

At the core of ROCKEY4ND is a specialized CPU with a USB interface. It supports the USB 1.0 standard and is
compatible with USB 2.0 standard. In addition to the CPU is a non-volatile memory chip that can save your data in
the event of a power loss. The ROCKEY4ND functions are divided into User, Module and Algorithm zones. The
developer may store important information (such as an application serial number) inside the dongle. You can
write to the ROCKEY4ND dongle as many as 100,000 times — there is no appreciable limit on the numbers of reads.
The ROCKEY4ND chip supports special functions for random number generation, seed code generation and user
defined algorithm interpretation.

2.2 ROCKEY4ND Hardware Interface

ROCKEY4ND USB supports USB Standard 1.1. At the most 16 USB dongles can attach to a computer with a USB
extension HUB. The LED of ROCKEY4ND USB indicates the status of the dongle. (In a normal state after the dongle
is attached to the computer the LED will be on all the time. If the LED blinks it indicates that the driver is not
installed. Other LED responses indicate hardware failure.)

Note: ROCKEY4ND is a plug and play USB device. To unplug a ROCKEY4ND while writing/reading, the dongle may

cause crashes to the operating system in some instances.

FEITIAN Rockey4ND User’s Guide

Chapter 3. Installing ROCKEY4ND SDK

You will find the program Setup.exe under the root directory of the CD-ROM included in the Software Developer’s
Kit (SDK). The contents of the CD-ROM are not zipped. Experienced developers may simply copy all necessary
content to the computer.

The content of the CD-ROM consists of two parts: Tools under the directory Tools. Some documents on how to
use these tools are provides in the corresponding folder. APIs for different programming languages.

3.1 Installing SDK

Below we will discuss how to install and use the development package.

Step 1.

FEITIAN provides a Setup.exe installation wizard program on the CD-ROM. You may select the components you
need. The installation of the drivers is also integrated in this wizard. Double click the setup.exe file from the root
directory of the ROCKEY4ND CD-ROM. You will see the first screen of the Setup Wizard pictured below (Figure
3.1). Select language at the first step.

Language zelection [V|

Flease select a language to use during the
installation,

R

[[0]4] [Cancel J

Figure 3.1
Step 2.
Close other application to avoid the need of rebooting the system.

FEITIAN Rockey4ND User’s Guide

5! ROCEEYARD SDE V1.15 Setun =

X

Welcome to the ROCKEYAND SDK
%1.15 Setup Wizard

This wizard will guide vou through the installation of
ROCKEY4MD SDK V1,15,

It is recammended that vou close all other applications
before starting Setup, This will allow Setup to update certain
syskemn Fles withouk rebooting your computer,

_Ick et to continue,

[pest >] [Cancel

Figure 3.2
Step 3.
View the software release agreement.

i';.E! ROCEEY4HD SDE ¥1.15 Setup

License Agreement ._-:-' /
Flease review the license terms before installing ROCEEY4ND SDE " . °
Vi.15,

Press Page Down to see the rest of the agreement,

Feitian Technologies Co., Lkd
Software Developer’s Agreement

all Products of Feitian Technologies Led, (Feitian) including, but not limited ta,
evaluation copies, diskettes, CD-ROMs, hardware and documentation, and all Future
orders, are subjact bo the terms of this Agreement. IF vou do not acree with the
terms herein, please return the evaluation package bo us, postage and insurance

prepaid, within seven days of their receipt, and we will reimburse vou the cosk of the pe
Prachirt lezz Freinbt and reacnnable handlinn rharnes

If wou accept the tetms of the agreement, dick I Agree to continue, You must accept the
agreement to install ROCKEY4MND SDE V1,15,

[< Back H I Agree] [Cancel

Figure 3.3
Step 4.
Figure 3.4 show the type of installation. Please select the content you want to install.

FEITIAN Rockey4ND User’s Guide

15! ROCKEY4RD SDE ¥1.15 Setup A=
Choose Components ' !
Choose which Featuras of ROCKEY4MD 50K W1, 15 wou wank to ¥ . o
inskall,

Check the components you want to install and uncheck the components yvou don't wank to
install, Click Mext to continue,

seectthetypeof mtal I |
L

Or, select the optional ROCKEY4MD AT Library ~
CHPCRSatE wish to ROCKEV4ND APT Head File T
i ROCKEY4MD Help Documents
ROCKEY4MD IDE Tools
[+] ROCKE4MD Samples L
[#] ROCKEY4MD Linux SDK 3
Ly I A NT =i il
Description
3pace required: 4.0ME ROCKEY4MD G4hit SDK

[« Back]L Texk =] [Cancel

Figure 3.4

Step 5.
Select the path to install the SDK.

15! ROCEEYAND SDE V1.15 Setup Eo&X
Choose Install Location ' [/
Choose the folder in which to install ROCKEY4RD 50K W1, 15, ¥ o

Setup will install ROCKEY4RD 50K W1, 15 in the “ollowing Folder, To install in a different Folder,
click Browse and select another Folder. Click Next to continue.

Destination Folder

iC:'I,Prcn;ram Files\FeitianROCKEY4MD | Browse..,

Space reguired; 4,0MEB
Space available: 5.5GE

[< Back]L Mext > | [Cancel

Figure 3.5
Step 6.
Finish installing the SDK.

Rockey4ND User’s Guide

FEITIAN

5! ROCKEY4ND SDE ¥1.15 Setup A=

Completing the ROCKEY4ND SDK
V¥1.15 Setup Wizard

ROCEEY4MD SDE V1,15 has been installed on vour
computer,

Click Finish ko close this wizard.

Figure 3.6

3.2 Uninstalling SDK

You may use Add or Remove Programs from the Windows Control Panel or select “FEITIAN” and then “Uninstall”

from the Windows Start menu to uninstall the installed components.

FEITIAN Rockey4ND User’s Guide

Chapter 4. Basic Concepts

This chapter covers the basic concepts and functions of the ROCKEY4AND software protection system. All ROCKEY
users should read this chapter carefully to familiarize themselves with ROCKEY.

4.1 Passwords

When developers purchase ROCKEY they will get 4 16-bit passwords. The first two are Basic passwords (first grade
passwords); the last two are Advanced passwords (second grade passwords). The 4 passwords for the demo
dongles in the SDK are: P1: C44C, P2: C8F8, P3: 0799, P4: C43B. The passwords are “burned” into the hardware so
that neither the user nor the manufacturer may change them. The developers must input the 4 passwords
correctly to have full access to the dongles. The developer should set any reference to the Advanced password set
to zero in the application program that is delivered to the end user — you should never reveal the Advanced
passwords to the end user in any form. The Basic passwords allow the end users to access all necessary ROCKEY
functions. We will discuss when one should input the Basic passwords, and when both Basic and Advanced

passwords are required in the chapters that follow.

4.2 Order Code

The Order Code is five to seven characters in length and corresponds to a unique customer password set. You
may use the Order Code for reordering ROCKEY4ND to be sure that all of the units in your inventory are

consistent.

4.3 Hardware ID

FEITIAN will burn a globally unique Hardware Identification (HID) number into each ROCKEY4ND dongle. The
HID cannot be changed. You may use the HID to positively identify an individual ROCKEY4ND. The HID is readable
with the Basic passwords. It is impossible to write HID even if you have the advanced passwords.

4.4 User Data Zone

The User Data Zone (UDZ) is a memory space that the developer can use to store data needed by the software
protection system. Users can read from and write to this space at any time. The total UDZ is 1000 bytes. The UDZ
is divided into 2 parts.

The low part (0-499 bytes): Users with any level of passwords have full permission (read/write). The high part
(500-999 bytes): Users with basic passwords (password 1and password 2) can only read the UDZ. Users with
advanced passwords (password 3 and password 4) have full permission (read/write).

4.5 Module Zone

The Module Zone was designed for multi-module encryption. It may be used to store module specific data for

FEITIAN Rockey4ND User’s Guide

Envelope encryption and/or API calls.

A ROCKEY4ND module is a 16-bit protected memory space. There are 64 “modules” in each ROCKEY4ND dongle,
so as many as 64 application modules may be protected with a single ROCKEY4AND dongle. The developer may
write data into the ROCKEY4AND modules and then use that data, along with ROCKEY4AND functions, to create
powerful and flexible software protection systems. If the content of the module is not “0” you can use the module;
if it is “0” you cannot use the module. You may determine if a module is useable by analyzing the attributes of the
module. The exact content can only be determined algorithmically.

ROCKEY4ND modules cannot be read and it can only be written with Advanced passwords.

The “Decrement” attribute can be read with the Basic passwords and can be written with the Advanced
passwords.

4.6 User Algorithm Zone

The User Algorithm Zone (UAZ) is a user-defined area for instruction storage. The number of instructions that may
be stored in the UAZ varies according to the ROCKEYAND model. ROCKEY4ND supports a maximum of 128
instructions. (Please refer to Chapter 8 ROCKEYAND Hardware Algorithms.)

The User Algorithm Zone (UAZ) cannot be read and may only be written with Advanced passwords.

4.7 User ID

The User ID is a 32-bit memory allocation that may be used to store an application serial number or other
identification information.
It may be read with the Basic passwords and written with the Advanced passwords.

4.8 Random Number

ROCKEY4ND can generate a true random number from its hardware. The random number can be used to prevent
tracing or used in hardware algorithms.

4.9 Seed and Return Values

ROCKEY4AND contains a proprietary algorithm that will generate four 16-bit return values from input of a 32-bit
seed code and the Basic/Advanced passwords. ROCKEY dongles with the same passwords should return the same
values if the seed codes are the same. The return values will be different for ROCKEY dongles with different
Basic/Advanced passwords.

FEITIAN Rockey4ND User’s Guide

Chapter 5. ROCKEY4ND Editor

5.1 Brief Introduction

You may use the ROCKEY4ND Editor to edit data stored in ROCKEY4ND, test its functions or write in batch. The

Editor is a convenient tool for learning to use ROCKEYAND and its edit operations. You can find the tool under
Editor directory of the SDK or in the installation directory. The ROCKEY4AND Editor interface is organized into five
parts: Tool Bar & Pull down Menu, Status Bar, Tree View, Operation Status Log and Operation Main Window. See

Figure 5.1.

\viw: ROCKEY4ND_Editor 1.2 - Rockey4ND_1
File Edit Wew Help

DP2H S22 RBM 0B @

= 79 Local donglefwireP] | Input Password | Edit [Test Il Self Test i |
& (0091653 BRI e L
Uszer Data Zone Uszer Algorithnis Zone
&) UserMemon 1 () User Memory 2
[Read] [Wwirite] | | D oy
| 0000 00 00 00 00 00 0O OO0 OO L Ul I—J D
0005 00 00 00 00 00 00 00 00 I
Uolo o0 00 o0 00 00 00 OO 00 U —] D
Uols 00 00 O0 00 OO0 00 OO OO0 — 03 | | G
0020 00 00 00 00 00 00 0O OO0 I —
0028 00 00 00 00 00 00 0O OO0 04 | | G
0030 00 00 00 00 00 0O 0O OO0 ——
U028 00 00 00 00 00 00 0O OO0 [1
i3 Operating status 0040 00 00 00 00 00 00 00 00 s |
| 57 161345 Road Suocel | D042 00 00 00 00 0O 00 00 OO n
e et o] 8020100 00 00 00 10 00 00 00 e O]
| L Oo0fEs 00 00 00 00 00 00 0O 00 o7 | | D P
0080 00 00 00 00 00 00 00 0o L ! L
I_DDbB 00 o0 00 o0 o0 00 00 oo v [P Auta S/E
Module Zone User ID Zone
0 (o]0 wae)
n (o)0 wae)
20 | wie | Uer 0|
03 [ﬁ_ID_-erte 1Al :'67| D-Wnte Fead
o4 [0 | e | 120 |0 wie
= — [wie |
o |O(wm] ©b |0Cwme]
{1]:1 [ﬁ_iD-erte 14 :'6_| D-W’nte
ol |0(we] 0 O(we] @
Eatch Dperation [ser 0] Single Operaton |
&) User 1D + O User ID r
Batch twrit Read Wwirite
() Mo Change) Use Time ID [&] g ;] o
< | s -
Figure 5.1

1. Tool Bar & Pull down Menu - This is the very topmost section of the screen. The typical Windows functions can
be invoked from the icons or pull-down menus, such as print, save and refresh. Shortcut keys and icons are also
offered.

2. Status Bar -The Status Bar is at the bottom of the screen. The Status Bar message is for the dongle selected in
the “Device Selector” (See below) portion of the screen. Status messages are: Read, Write and Ready. See Figure
5.2.

FEITIAN Rockey4ND User’s Guide

1w ROCKEY4ND__Editor 1.2 - Rockey4ND_1

File Edit WYiew Help

= =]

¥ |
= aE

= % Local donglefwiriF] | Input Password | Edit | Test | SeffTest |
&2 (0408fb1653)

s

Self-test

Testing input Testing result Error code
Uszer Memary 1
User Memory 2
User ID
Randaom
Seed
Test Module
Test cale. 1
g Operating statuz el
’ Test cale. 3
Initislize dongle

Settings Operation
Testall Status Found 1 ROCKEY4ND, testing 1 [0x08f01653)...

Test selected Select all Self-testing, please wail

[T]

Figure 5.2
3. Tree View - This is the upper left portion of the screen and shows the current OS version and ROCKEY4AND
dongles that are attached to the computer. See Figure 5.3.

FEITIAN

ROCKEY4ND_Editor 1.2 - Rockey4ND_1

Rockey4ND User’s Guide

File Edit Wiew Help

2k

22 @R%BE

Uszer Algonthms Lone

o e | [
=N

[|0

05 |A=AB
e 10
o7 []

[l Auta5/E

User ID Zane

User ID 1W|

Fiead

=] rj Local donglefwineF) inﬂlit_ﬁﬁ\ﬂd_] Edit | Test Il Self Test
& (00801653
Uszer Uata Zone
() User Meman 1 () User Memory 2
[Read] [‘write
0000 0o oo oo 00 00 00 0O OO Lo
0005 00 00 00 00 00 00 0O 00
0010 00 00 00 00 00 00 0O OO
0018 00 00 00D OO0 00 0O 0O OO =
0020 00 00 00 00 00 00 0O OO
0025 00 00 00D 00 DO DO 0O OO
U040 00 00 00 00 DO DO 0O OO
- 004 00 00 00 00 DO DO 0O OO
¢ Operating status 0040 00 00 00 00 OO0 00 00 00
" 161911 Read user memonSucee: gggg gg gg gg gg gg gg gg gg
\/18:19:12F|e§dusermemnrySucce. 0052 00 00 00 00 00 00 00 00
161914 Wiite user memonySucce: 0060 00 00 00 00 00 00 00 0o
" 16:19:1E Poad uscr memornyS ucee: O0es 00 00 00 00 00 o0 00 oo -
" 16:20:21 Set module 2oneSuceess =
" 16:20:32 Flead user memonySucce:
w0 |0 e &
0|0 o)
100 0 wE]) —
n o]0
12 i_D__“:‘ “Tite
12 [0] O[]
140
150 i
Batch Operation [User 0]
(&) User 1D +) User D -
() Mo Change O Use Time ID
< | @

Sinale Operaton

Figure 5.3

4. Operation Status - The time, results and error prompt of the previous operations will display here. This section

is the lower left portion of the screen. See Figure 5.4.

FEITIAN Rockey4ND User’s Guide

\t ROCKEY4ND_Editor 1.2 - Rockey4ND_1
File Edit ‘Wiew Help

D2E sk R L£BE QA

B _';"I._océluaong-l_e[_\:\}.i-n;éﬁ]. ;l-nE!LE‘??E"_\iD__[!j___I Edit | Test I Self Test =
& (0x08fh1E53)
Uszer Data Zone Uszer Algonthms Lone
&) User Memaony 1 (O User Memary 2
[Fead] I \Write |
| 0000 00 00 00 0O 00 0O 00 00 Lo U Iﬁ] D
0008 00 00 00 00 00 00 00 00 = I
00l0 oo 0o 00 00 00 00 00 00 Uz %]
0018 00 00 00 00 00 00 00 00 == D3i | D
0020 00 00 00 00 00 00 00 00 —
0028 00 00 00 00 00 00 00 o0 04 | | D
0030 00 00 00 00 00 00 00 00 —
0028 00 00 00 00 00 OO 00 o0 ey 1
@ Operating status 0040 00 00 00 00 00 DO 00 00 & &:]
|« 16:1%:11 Read user memorySucce: DDEB 0o 0o 00 00 00 00 00 00 06] E]
| 16:1912 Read user memorySucce: § 00 0000 00 ooonn no-ooo =
| e : U058 00 00 00 00 00 00 00 oo D?i |E]
:518:19:14Wr|teusermemorySuc:c:e: 0060 00 00 00 00 00 00 00 00 e b
16:1916 Read uzer memonSucce: O0e& 00 00 00 00 00 00 OO0 OO0 s -
W 1E:2021 Set module zoneSuccess : = SR
o 1620032 Read user memonSucce:
Module Zone Uszer ID Zone
] (e | B wae]
S
Current Operation Status T Eo—
" 0z [0 [wite] UserlD [11111111 |
0O wae] T
8 O e) T
—
w0 O e]
[0 O wae]
w0 O e]
Batch Operation [Uzer 10 Single Operaton
&) User D + O UserID - _ .
() Mo Change O Use Time 1D SEVATR e
| £ | > =

Figure 5.4
5. Operation Main Window - The Operation Main Window has five selection tabs: Password, Edit, Test, Self Test
and Batch Write. Each tab corresponds to a screen and a function.
Template files (.rki) can be opened by dragging and dropping the template file to the open Editor window. It can
also be opened from the file pull down menu in the Editor or by clicking the file from Explorer. You may print
preview the template file and print it out. You may use the Editor without a ROCKEY4AND dongle attached to the
computer and save the results to a template file. The template file can later be used for a “Write” or “Batch
Write” to a ROCKEY4ND dongle(s). The template file may be updated with the Editor while dongles are attached.

A progress bar will display all your operation progress and you may stop your operations at any time.

Note: All numbers are input and displayed in hexadecimal with the exception of the number of generated seed

codes in the test screen.

5.2 Operation

5.2.1 Input Password

You may enter the Basic and Advanced passwords as shown in Figure 5.5.

FEITIAN Rockey4ND User’s Guide

1% ROCKEY4ND_Editor. 1.2 - Rockey4ND. 1
File Edit Wiew Help

DP2EH S22 RARK BB QA

=] r} Local donglefwireF) Input Password | Edit | Test Il Self Test | |
& (00801653

Basic P41 ‘ | Basic P2 | |

Addv P1 | | advrwz | |

[Auto-save pass

[o | [pEmMo |
3 Dperating status
" 161911 Read user memonSucee:
" 16:19:12 Read user memonySucce:
161914 Wiite user memonySucce:
" 16:19:1E Pead uscr memornyS ucee:
< | > j
Figure 5.5

Make sure you enter the correct passwords. If the Basic passwords are incorrect Editor cannot find the dongle. If
the Basic passwords are correct, and the Advanced passwords are invalid, the Editor should find the dongle and
allow Read functions, but it will not allow Write functions.

If you click “DEMQ” button, you may perform any operations on DEMO dongles. The 4 passwords for DEMO
dongles are: P1: C44C, P2: C8F8, P3: 0799, P4: C43B.

The passwords will be saved automatically when you choose “Auto save password”. This function avoids future
password entry errors.

If the entered password information corresponds with the attached ROCKEY4ND dongle, you will be taken to the
“Edit” screen automatically. The system will automatically begin to search for attached dongles.

Note: You may edit, save, open and print template files without inputting the passwords. However, you cannot
operate the dongle without at least the Basic passwords. Entering the Basic passwords will allow you to both edit

template files and perform Read operations on the corresponding attached dongle.

5.2.2 Edit

FEITIAN

Rockey4ND User’s Guide

The ROCKEY Hardware ID (HID) is displayed for all found dongles. The HID is globally unique and cannot be
changed. See Figure 5.6:

Dongle ID

File Edit Wiew Help

D26

-i;! -_J -I._Uc:éluanng-l_e_m F) | Input Pazsward i Edit | ot |
Q [0x08fb1853) R
Uszer Data Zone orithrs Zone
() User Meman 1 () User Memary 2
| ket | [wie Jj@jees J[s]@
0000 0o 00 00 00 OO0 0D OO0 OO Lo 0] Eamaet J D
000% 00 00 00 00 OO0 00 00 OO I
00l0 0o 00 00 00 OO0 00 00 OO]
0018 00 00 00 00 OO0 00 00 OO | E]
0020 00 00 —
0028 00 00 04 | | D
. [a=tB |
'd Operating status /5' :J
| \/ 16:19:11 Read user memonySucce: 1]] D
| o 16:19:12 Read user memanySucee: e
| W 1E13:14 wiite user memany/Succes 07 | | D hor
| 161916 Read user memorySuce - .
| o 16:20:21 Set module zoneSucceC - R
| " 16:20:32 Fiead user memorySucce:
Module Zone Uszer ID Zone

(JO[wite] 110 |0 wie] T
\O [wiie | 120 [O wie

(BT = e e —
® OCwe] (o | Ol

wio |O(wie] 150 |D(wme] o

me |B(wm] ol O
o 10Ga] »b I
/__/ 2 O(we] 0 |0 WET— Gmb [mn |
Write 6 to Module 0

o
o

and allow decrement

Batch Operation [User 1D

@) User 1D +

O User D

Single Operaton

() Mo Change) Use Time D m S
¢ L=
Figure 5.6

Here you may edit the specified ROCKEY. There are 6 components on the Edit screen: User Data Zone (UDZ),
Module Zone, User Algorithm Zone (UAZ), User ID Zone (U1Z), Single Operation Zone (SOZ), and Batch Operation
Zone (BOZ).

User Data Zone (UDZ) — The UDZ is a user defined memory space. Data may be entered here in hexadecimal or
ASCII text in the field provided. Click the “Read” button to read data from the UDZ and “Write” to write to the
uDZ.

If you click the Read or Write button a progress bar will appear. After the operations are finished the results will
be displayed in the Operation Status section. See Figure 5.6.

Module Zone - This part of the screen is used to update the values and decrement attributes of the ROCKEY4AND
modules. To add new values to a module simply enter the new value in the field of the module, and click “Write”.
The Decrement attribute can likewise be altered. (All 64 ROCKEYAND modules are displayed here, labeled 0 to F in
hexadecimal.)

User Algorithm Zone (UAZ) — You can write some algorithm statements here, which consist of operands and
operator(s), such as A=A+B (refer to Chapter 8). There is a button after each statement, marking the statement.
The flag of the start statement (S), end statement (E), intermediate statement (blank), and standalone statement

FEITIAN Rockey4ND User’s Guide

(SE) will be displayed on the button in turn when you click on it. If you check Auto S/E box, the statements you
have added will be marked automatically. See Figure 5.6.
User ID Zone (UIZ) - User identification information may be read from or written to the UIZ of the ROCKEYAND

dongle in hexadecimal. See Figure 5.6.

Single Operation Zone (SOZ) — Click Read button to read the content of the dongle that has been selected into the

memory. Click Write button to write the content of the memory to the dongle that has been selected.

Batch Operation Zone (BOZ) — You can change all User IDs of the dongles in the edit area. Enter a start ID in the
User ID field. Choose a method for setting the ID (see below). Click Batch Write button to update all IDs of the

dongles.

» User ID +: The value entered in User ID field will be written to the first dongle of the dongle list. Then, 1
is added onto the value and the updated value is written to the next dongle. For example, the values
“124” and “125” will be written to the second dongle and the third dongle respectively after the initial
value “123” is written to the first dongle if User ID + radio button is checked and Batch Write button is
clicked.

» User ID -: Its function is similar to that of User ID + button, except that the ID value is descended.

» Use Time ID: Use the time value of the system clock as the User ID.

» No Change: The value of User ID field will be written to each of the dongles in the list, without any

change.

5.3 Save Work

The template can be saved to the disk or be printed for backup.

FEITIAN Rockey4ND User’s Guide

& ROCKEYAND. Editor 1.2 - Rockey4ND 1

= 'J Lol dorglefwincP) |t [NestPage] 1

&2 (0x08101653)

ROCKET4ND data template

User Memuryl:

00 OO0 00 OO 00 00 00
00 OO0 00 OO0 00 00 00
00 OO0 00 OO0 00 00 00
00 OO0 00 00 00 00 0o
00 OO0 00 OO 00 00 00
00 00
00 00
B Dol sls 80 00 60 D0 00 00 60 00 00 G0 00 G0 DO 00 0O 60 D0 60 00 0O G0 DO 00 00 60 00 60 00 0O 0
+/ 1818711 Read user memonSuceell 41 0g g pg oo 0o G0 00 00 00 00 G0 00 00 00 DO DO 00 00 A0 00 00 80 00 08 00 00 00 DA 00
v/ 16:1912 Read user memonySuces | 00 OO
161314 wiite user memorySuccesf| 00 00 00 00 0O 00 00 00 00 00 00 OO0 OO0 00 00 00 00 OO 00 0O 00 00 00 00 00 00 00 00 00 00
' 16:19:16 Read user memorySucce: 00 00 00 00 0O 00 00 0O 00 00 0O 0O 00 00 00 00 00 00 OO0 OO 00 00 00 OO0 OO0 OO OO OO 0O 00
/ 16:20:21 Set module zoneSuccess (| 00 00 00 00 00 00 00 0O 00 00 00 00 00 0O 00 D0 00 00 00 00 0O 0O 00 00 00 00 00 00 00 00

v/ 16:20:32 Read user memonSucee: | gg oo g 00 00 00 DO 00 00 0O 00 00 DO 00 00 0D 00 00 00 0O
\/ 16:21:22 Read user memonySucce: A3CTIT:

" 16:21:28 Fiead user memorySucce:
" 1E:21:38 white algoritimS uccessfu
W 1E:21:43 Wwhite user memonySucces
v 18205 Read wermemensuces®l D D D D D 0 L D D D D D0 0 LD DL DL L Ll LDl M

" 16:22:34 Batch generate seedSuct

T.Jse.r M;emo;:y 2

Page 1

Figure 5.7

5.3.1 Test

There are five components to the Test screen: User Data Zone (UDZ), Calculation Zone, User ID Zone (UIZ),
Module Attribute Zone and the Seed Calculation Zone. See Figure 5.8.

FEITIAN

Rockey4ND User’s Guide

ROCKEY4ND_Editor 1.2 - Rockey4ND_1

File Edit Wiew Help

PEEEYIEERRERE

J Local donglelwir) Jalntoras Al e El ek SLRESE TR | =
62 (0w08fh1653)
Llzer Memony Uzer Algonthm Zone
(3) Uszer Meman 1 () User Memary 2
[Read [Calculate]
UOgo oo oo o0 00 00 00 00 0o “' Parameters
0005 00 AA Ak Ab AA A3 A4 AA
0010 A4 A4 Ak AL AA A4 A4 0D @ Cacl OCae2 (OCalc3
0018 00 00 00 00 00 00 00 OO : e
0020 00 00 00 00 00 0O 00 00 UAZ Addr. | Mod#t |0
0025 00 00 00 00 00 00 00 00 —
L 0030 00 00 00 00 00 00 00 00 A B |0
- O03s 00 00 00 00 00 0O 00 0o —
| 'd Operating status 004000 00 0O 00 00 0D 00 00 C oo
| o 161311 Read user memornySuccs: 0045 00 00 00 00 00 o0 o0 oo
| 1615912 Fead user memanSucee: UUEU 00 00 0o 00 oo o0 a0 oo Results
| o 1615974 whrite user memanySucce: DD,JS On 00 00 Ol GOS0 A B [0 |
OO&0 00 00 00 00 00 0O 0O 00 | |
W 161916 Foad user memarySucco: 00f2 00 00 00 00 00 00 00 o0 iE —— —
" 16:20:21 Set module zoneSuccess £ = C | D o |
" 16:20:32 Read user memorySucce:
" 16:21:22 Rlead user memorySucce: Module Zone User 1D
" 16:21:28 Fiead user memorySucce: F ;i
W 16:21:38Wwrite algoritmSuccessfu I Head] L fead il
" 1E:21:43 white user memonySucces — 11111111 i
" 16:21:45 Flead user memorySucce: 0o !_lN\mi o Bl WA, ‘
" 16:21:45 Riead user IDSuccessfull,
" 16:21:50 Read user IDSuccesshully St
\/ 16:21:52 Wwiite uzer IDSuccessfully [Calculate]
" 16:21:55 Flead user IDSuccessfull, A
| Seed | |
I I_INV.GJ Result | Ii | I|
L [Batch Generate Seed]
Mumber “1 oo |
Fie |CAT=sRandom_Seed|[]
< > =
Figure 5.8

User Data Zone —The UDZ is a user defined memory space. Data may be displayed in hexadecimal form, or as
ASCII text. Click the “Read” button to read data from the UDZ. You may view hexadecimal data or ASCII text here.
Calculation Zone — Be sure that you are familiar with the calculation functions before using the Calculation Zone.
First select the calculation you would like to test (For Calcl and Calc3 a “Module” entry box will appear. For Calc2
a “Seed Code” box will appear.). Then input the start address of your algorithm stored in the UAZ. The start
address is where the instruction is marked with “S” or “SE”. Enter hexadecimal input values to the parameter A, B,
C and D. Enter the module number or seed code and click the “Calculate” button. The results of the operation will
be written to the parameters listed in the “Results” section of the Calculation Zone.

User ID Zone (UIZ) — Click the “Read” button to read the user defined ID from the UIZ of the ROCKEYAND dongle
UIZ is 32 bits in length.

Module Attribute Zone — This zone indicates the status of the Zero Value and Decrement attributes of the
ROCKEY4ND modules. Click the “Read Module Attributes” button to update this portion of the Test screen. “N/A”
means that the Zero Value attribute is “0”. “Valid” means the Zero Value attribute is not “0”. If the “Dec” button is
grayed out the module cannot be decremented. If it is to be decremented, clicking the “Dec” button will reduce
the value stored in the module by “1”.

Seed Calculation Zone — There are two small sections to the Seed Calculation Zone. The top section will display
four calculated seed results for any entered seed code. Enter a decimal number in the “Number Generate” field in
the bottom section, and that same number of random seed codes and corresponding results will be written to a
text file defined in the “File” field. The default file is Random_Seed.txt under the directory of the executable.

FEITIAN Rockey4ND User’s Guide

5.3.2 Self-test

Test all ROCKEY4ND dongles attached to the computer one by one or test only selected dongle(s). First, you can

specify the items that will be tested. All specified dongles will be tested automatically.
\viw: ROCKEY4ND,_Editor 1.2 - Rockey4ND_1

File Edit Wiew Help

:.3} E.F l.i - | = |ﬂ % Lll‘j E Iﬂ

= 7§ Local donglefwirkF] | Input Passward | Edit I Test | aelilest -
-8 (0x08fb1653]

Helt-test

Testing input Testing result Error code
User Memary 1
User Memary 2
User 1D
Random
Seed
Test Module
Test calc. 1
g Operating status Lol
Test cale. 3
Iritialize dorgle

Tested contents

Settings Operation
Test all Status Found 1 ROCKE'YY4ND, testing 1 [0<08fb1653]...

D]

Figure 5.9

Note: This test is like a “Format” command in that it will delete any data or parameters stored in the dongle. It

would be best to run the Self Test upon receipt of the dongle or if there is a significant problem with the dongle.

FEITIAN Rockey4ND User’s Guide

Chapter 6. ROCKEY4ND Envelope Encryption

The ROCKEY4ND Envelope encryption is a good solution if you do not have the source code or the time to
use the API functions.

Currently, the envelope tool has the following features:

1. The components of the envelope tool include the interface program for entering parameters by users, the
enveloper based on the command line, and the enveloper module on the dongle.
2. Interface program

A. Parameters for all dongles from Feitian are supported.

B. The encryption parameters for PE, .NET, and data envelope files are supported. The files are divided into
two types: program and data.

C. Program types that can be recognized automatically: win32PE, WIN64PE, WIN32.NET, and WIN64.NET

D. Supported language environments: Simplified Chinese, Traditional Chinese, and English. More can be
specified by adding self-defined language environments to the folder language. A maximum of 16
language files can be specified for now.

E. When there is only one .DLL file in folder WIN32_PE, the dongle selection dialog box will not be displayed,
and the dongle type will be selected automatically to facilitate the integrated or individual release of this
system.

F. The types of the envelope file supported by the current dongle can be recognized automatically
according to the presence of related .DLL file in the folder. When an unsupported file type is added, a
message will be displayed.

3. The enveloper based on the command line

A. If you do not want to use the interface program, you can develop a self-defined upper-level interface
based on this command line program.

B. Apparently, the commands of the command line program are complex. If you do not want to learn how
to use them, the C source files for generating a command line from data structure can be available upon
request to facilitate your development of interface.

4. The enveloper module on the dongle

This is the core module for implementing different types of dongle and file enveloping. By developing this module
and place it into a corresponding folder, the required functions can be achieved, independent of the upper-level
interface and the command line program. Currently, the following modules have been implemented: win32_PE,
win32_DOTNET, and win32_DATA for Rockey4ND, and win32_PE, win32_DOTNET, and win32_DATA for
NetRockey4ND.

Screenshots:

FEITIAN Rockey4ND User’s Guide

Choose a dongle type (this box is not displayed if there is only one .DLL file under WIN32_PE folder):

S5elect Type

?DEKEY

Flease Select Dongle Type

| Rockeyd HD v

Hoolerd W
Het Rockewd WD

Figure 6.1

Main interface:

Feitian Shell Protect Center 1.0.9.1210

Project File Protect Language Wiew Help

e ad@R <D

|| B Rockey4 NDx ‘ Index | Type Import File Export File Result
P1 44 |
Pz CaFs

| B Eind LID No

| B Eind Module Mo
De Mo
Eind HID 00000000
Check. Time inkeryvals 120
Wessage Title Error |
M3G of Mo Dongle Can't Find the Dongle :

UM

Figure 6.2

FEITIAN

Rockey4ND dongle options:

Rockey4ND User’s Guide

B Bind UID

o =3
ULy SEar

Uil end

El Bind Maodule

Desc

Bind HID

Message Title
MG of Mo Dongle

Add File dialog box:

Check Time intervals

440 |
CEF3

0oooaooo

120

Errar

an't Find the Dongle

Figure 6.3

File Path
Select File Type: Frogram v
Data
InFile: | |]
OutFile: | | .

Figure 6.4

FEITIAN Rockey4ND User’s Guide

The file type is recognized automatically. When a file is selected, related envelope options are displayed on the

right side:

PE envelope options:

Feitian Shell Protect Center 1.0.9.1210

Project File Protect Language ‘Wiew Help

e RBRLL Y

El Rockey4 ND Index Twpe Impaort File Export: File Result
F1 C44C o1 Met_32 E:\MyExplorer.exe MyExplorer_packed.exe
Pz CaFs

El Bind LID Ho 03 DATA3Z ENEcma-335.pdf Ecma-335_packed. pdf

Bl Bind Module Mo
Eind HID 00000000
Check. Time inkervals 120
Message Title Error
3G of Mo Dongle Can't Find the Dongle

Bl PE ShellOption
Anti Debug Ves
Check Parent Mo
Replace Code o
File Protect Mo

Figure 6.5

.Net envelope options:

FEITIAN Rockey4ND User’s Guide

® Feitian Shell Protect Center, 1.0.9.1210

Project File Protect Language ‘Wiew Help

= s W 5 e g -

f @R oY D

i & H E&- o e |)

El Rockey4 ND Index = Twpe Import File Export File Result
P1 C44iC

Pz CaFg 0z HOTEPAD_packed. EXE
| & EBind LI Ho 03 DATA3Z ENEcma-335.pdf E:\Ecma-335_packed. pdf
UID Start 00000000
LD End 00000000
| B Eind Module Mo
Desc]
Moduls inde:x]
Eind HID 00000000
Check. Time inkervals 120
Message Title Error
3G of Mo Dongle Can't Find the Dongle
Bl .NET ShellDption
I Algorithm 3DES
B RedisposeStronghame Mo

CreateMewsStronghlame | Mo
SkrongFileManme

Encrypk BLOE Data Mo
Encrypk String Data Mo
Encrypk Resource Data Mo
Encrypt Method Body o
Method List Encrypt All

UM

Figure 6.6

Choose a function or functions to be encrypted:

Feitian Shell Protect Center 1.0.9.1210

Project File Protect Language View Help

LeURBRLYL Y

El Rockeyd ND Indes Type Import File Export: File
P1 C44C 01 Met_3z E:\MvExplorer. exe E:\MyExplorer_packed.exe
Pz CaFg 0z PE_32 E!\MOTERAD.EXE EWOTERAD_packed EXE
Bl Bind UID Mo 03 DATA3Z E:\Ecma-33s.pdf E:\Ecma-335_packed, pdf
UID Start 0000000
UID End 0000000
B Bind Module o
Diese M Select Function to Encrypt
Module inde:x a
Bind HID 00000000 & [#Ar00T =)
o B--IZMyExplorer. Forml
Check Time intervals 120 4. ctor
Message Title Etrarstpose
M35G of Mo Dongle Can't Find the Dongle ~[#InitializeComponent
El .NET ShellOption ~[AMain)
i e
E RedisposestrongMame Mo Z“‘ eruTtenZ_Click —
CreateNewStronghame Mo Zm erultemd_Click
StrongFileMarne [WAmenuTtenS _Click
Encrypt BLOB Data No ~[Wnenul tenb_CLick
Encrypt Skring Data Mo Zm enlten ID‘Cl? ok
----Zmenulteml 1 Cliek
Encrypt Resource Data Mo ~[WmermTtemld_C1lieck
Encrypt Method Body Mo [AmermTtend Click M
Method List Encrypt Al J

Figure 6.7

FEITIAN Rockey4ND User’s Guide

Date protection options:

Feitian Shell Protect Center 1.0.9.1210

Project File Protect Language WYiew Help

e RBR LY D

3G of Mo Dongle
E DataProtect Option
Algorithm

[Eind Module Mo
Bind HID 00000000
Check Time intervals 120
Message Title Error

Can't Find the Dongle

3DES

Figure 6.8
Net Rockey4 ND dongle options:
Pl 44
Pz C8F5
Access Mode Share Maode
Logon Module Index o
B Bind LID Mo
Bind HID 00000000
Check Time intervals 120
ConfigFile Mame clicFgRy4MD.ini
Message Title Errar
1M5G of Mo Dongle Can't Find the Dongle
MSG of Tao Users Too Users Lagined
1M5G of Mo Config File Can't Find MetWork Config File
Figure 6.9

Results after adding an envelope:

B Rockey4 ND Index | Type Import File Export File
F1 C44C o1 MNet_3z E:\MyExplorer.exe E:\MyExplorer_packed.exe
Pz CaFg 02 PE_32 E:\NOTEPAD.EXE E:\NOTEPAD_packed.EXE
B Bind UID Mo

FEITIAN Rockey4ND User’s Guide

Index Tvpe N Import File Export File Result
01 Met_32 EdMyExplorer.exe E:\MyExplorer_packed exe @ Ok
oz PE_32 E:\NOTEPAD.EXE E:\MOTEPAD _packed EXE @ Ok
03 DATAZZ E:\Ecma-335.pdf E:\Ecma-335_packed.pdf @ Ok

module number 12:0 NModule iz reduced:Ho

Open the back-timing detection, Detection time interwal is:120
Error Message title:Exrror

Tipz can not find the USE keys:Can’ t Find the Dongle

Encrvption Kesultz:Sucess

Figure 6.10

FEITIAN Rockey4ND User’s Guide

Chapter 7. ROCKEY4ND APIs

The ROCKEY4ND Application Programming Interface (API) is the most flexible and powerful means of protecting
your software. The security level of your software is determined by how you implement the API. The API set has
been simplified and is intended to make the ROCKEY4AND programming effort as effective as possible.

API encryption enables you to call ROCKEY in your application to enhance its security level. You may check the
existence of the dongle anywhere in your application and take actions as a result of the check. You may also check
the data you stored in the UDZ.

You may use the Editor program to set and write data to the modules, write algorithms to the User Algorithm
Zone (UAZ), user information to the User ID zone (UID) or take other actions. All such operations may be
performed with the API.

We will take the interface of the C language to demonstrate how to call the API. Similarly, you may call other
language interfaces the same way.

7.1 ROCKEY4ND Function Prototype and Definition

WORD Rockey

(

WORD function,

WORD* handle,

DWORD* Ip1,

DWORD* Ip2,

WORD* p1,

WORD* p2,

WORD* p3,

WORD* p4,

BYTE* buffer

);

FEITIAN provides developers with a unified function from which they can employ all ROCKEY4AND operations.
This function is defined as a multi-function function.

Below is a call example for C language, and we will discuss future applications in a similar way. retcode =
Rockey(function,handle,lp1,lp2,p1,p2,p3,p4,buffer);

The “ROCKEY” function parameters are defined as: Note: All interface parameters must be defined in your
program.

ROCKEY4AND cannot transfer NULL or O pointers. Use of Null or 0 pointers in your program will generate an error.

Parameter Name Parameter Type Parameter Meaning

Function A 16-bit number API function

Handle Address of a 16-bit ROCKEY4ND session

FEITIAN

Note: All parameters must be defined in the program. Do not pass a Null pointer. Otherwise, an error will occur.

Rockey4ND User’s Guide

number address

Ipl Address of a 32-bit long parameter 1
number

Ip2 Address of a 32-bit long parameter 2
number

pl Address of a 16-bit parameter 1
number

p2 Address of a 16-bit parameter 2
number

p3 Address of a 16-bit parameter 3
number

p4 Address of a 16-bit parameter 4
number

Buffer Address of a 8-bit Buffer
number

“function” is a 16-bit number. It stands for the specific function and it is defined below:

Parameter Name Parameter Type Parameter Meaning
RY_FIND 1 // Find ROCKEY4AND
RY_FIND_NEXT 2 // Find next
ROCKEY4ND
RY_OPEN 3 // Open ROCKEY4ND
RY_CLOSE 4 // Close ROCKEY4ND
RY_READ 5 // Read ROCKEY4ND
RY_WRITE 6 // Write ROCKEY4ND
RY_RANDOM 7 // Generate Random
Number
RY_SEED 8 // Generate Seed
Code
RY_WRITE_USERID 9 // Write User ID
RY_READ_USERID 10 // Read User ID
RY_SET_MOUDLE 11 // Set Module
RY_CHECK_MOUDLE 12 // Check Module

FEITIAN Rockey4ND User’s Guide

RY_WRITE_ARITHMETIC 13 // Write Arithmetic

RY_CALCULATE1 14 // Calculate 1

RY_CALCULATE2 15 // Calculate 2

RY_CALCULATE3 16 // Calculate 3

RY_DECREASE 17 // Decrease Module
Unit

e “handle” is the pointer for ROCKEY operation’s handle.

e “lp1” and “lp2” are the pointers for long integer parameters. Their content depends on the functions.

e “pl”,“p2”, “p3” and “p4” are the pointers for short integer parameters. Their content depends on the
functions.

e “buffer” is the pointer for character buffer. Its content depends on the functions.

7.2 ROCKEYAND API Services

Here we discuss the API services in detail. The following functions marked with [*] require the two Advanced
passwords.

Note: p3 and p4 are Advanced passwords. They are for developers to operate on the dongle. The Advanced
passwords should not appear in the software you offer to your customers and you should set the two Advanced

passwords “0” when searching for dongles in your application.

7.2.1 Find a ROCKEY4ND dongle (RY_FIND)

Objective: To check if a specific ROCKEYAND is attached to the USB port.

Input parameters:

function = RY_FIND

*p1 = Password 1

*p2 = Password 2

*p3 = Password 3 (optional)

*p4 = Password 4 (optional)

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will write the ROCKEY4AND Hardware ID (HID) to *Ip1.

7.2.2 Find the Next ROCKEY4ND dongle (RY_FIND_NEXT)

Objective: To check if another specific ROCKEYAND is attached to the USB port.
Input parameters:

function = RY_FIND_NEXT

*p1 = Password 1

*p2 = Password 2

*p3 = Password 3 (optional)

*p4 = Password 4 (optional)

*Ip1 = The hardware ID of the last dongle found by RY_FIND or RY_FIND_NEXT

FEITIAN Rockey4ND User’s Guide

Return value:
A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will write the ROCKEY4AND Hardware ID (HID) to *Ip1.

7.2.3 Open the ROCKEY4ND dongle (RY_OPEN)

Objective: To open a ROCKEY4AND dongle with specified passwords or hardware ID.
Input parameters:

function = RY_OPEN

*p1 = Password 1

*p2 = Password 2

*p3 = Password 3 (optional)

*p4 = Password 4 (optional)

*Ip1= Hardware ID

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will write the handle address to the *handle parameter

7.2.4 Close the ROCKEY4ND dongle (RY_CLOSE)

Objective: To close a ROCKEY4AND dongle with a specific handle.
Input parameters:

function = RY_CLOSE

*handle = ROCKEY4ND's handle

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error.

7.2.5 Read the ROCKEY4ND dongle (RY_READ)

Objective: To read the contents of the User Data Zone (UDZ).

Input parameters:

function = RY_READ

*handle = ROCKEY4ND's handle

*p1 = off set of UDZ(zero base)

*p2 = length (unit is byte)

buf = address of buffer

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will result in the contents of the UDZ written to the memory buffer.

7.2.6 Write to the ROCKEY4ND dongle (RY_WRITE)

Objective: To write data to the User Data Zone. (UDZ)
Input parameters:

function = RY_WRITE

*handle = ROCKEY4ND's handle

*p1 = off set of UDZ

*p2 = length (unit is byte)

FEITIAN Rockey4ND User’s Guide

buf = address of buffer
Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error.

7.2.7 Generate a Random Number (RY_RANDOM)

Objective: To get a random number from the dongle.

Input parameters:

function = RY_RANDOM

*handle = ROCKEY4ND's handle

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will result in the *p1 address populated with the random number.

7.2.8 Generate Seed Code Return Values (RY_SEED)

Objective: To get return codes from the input of a seed code.

Input parameters:

function = RY_SEED

*handle = ROCKEY4ND's handle

*Ip2 = Seed Code

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will result in the following addresses populated with seed code return values: *p1 = Return
Code 1 *p2 = Return Code 2 *p3 = Return Code 3 *p4 = Return Code 4

7.2.9 Write the User ID [*] (RY_WRITE_USERID)

Objective: To write the user defined “User ID” to the User ID Zone (UIZ).
Input parameters:

function = RY_WRITE_USERID

*handle = ROCKEY4ND's handle

*Ip1 = User ID

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error.

7.2.10 Read User ID (RY_READ_USERID)

Objective: To read the user defined “User ID” from the User ID Zone (UI1Z).

Input parameters:

function = RY_READ_USERID

*handle = ROCKEY4ND's handle

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will result in the *Ip1 address populated with the User ID.

7.2.11 Set a ROCKEY4ND Module [*] (RY_SET_MOUDLE)

Objective: To write a value to a specific ROCKEYAND module and set the Decrement attribute.

FEITIAN Rockey4ND User’s Guide

Input parameters:

function = RY_SET_MOUDLE

*handle = ROCKEY4ND's handle

*p1 = Module Number

*p2 = Module Unit Value

*p3 = If decreasing is allowed (1 = allowed, 0 = not allowed)

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will result in module unit # “*p1” storing value “*p2” and the Decrement attribute set to “0”
or “1”.

7.2.12 Check a ROCKEY4ND Module (RY_CHECK_MOUDLE)

Objective: To read the attributes of a specific ROCKEYAND module.

Input parameters:

function = RY_CHECK_MOUDLE

*handle = ROCKEY4ND's handle

*p1 = Module Number

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will result in “*p2” populated in the value from the Zero Value attribute (1 = module value is
not zero), and “*p3” populated with the value from the Decrement attribute (1 = module can be decreased).

7.2.13 Write Arithmetic [*] (RY_WRITE_ARITHMETIC)

Objective: To write user-defined mathematical instructions to the User Algorithm Zone (UAZ).

Input parameters:

function = RY_WRITE_ARITHMETIC

*handle = ROCKEY4ND's handle

*p1 = position of first instruction in UAZ

buffer = buffer address of the algorithm command string

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will result in the UAZ populated with the algorithm command string from the buffer.

7.2.14 Calculate 1 (RY_CALCULATE1)

Objective: To return the results of a calculation performed in ROCKEY4ND, using input provided by the developer
and the RY_CALCULATE1 function.

Input parameters:

function = RY_CALCULATE1

*handle = ROCKEY4ND's handle

*Ip1 = Start point of calculation

*Ip2 = Module number

*p1 = Input value 1

*p2 = Input value 2

*p3 = Input value 3

FEITIAN Rockey4ND User’s Guide

*p4 = Input value 4

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will result in the addresses p1, p2, p3 and p4 populated with the results of the calculation.

7.2.15 Calculate 2 (RY_CALCULATE2)

Objective: To return the results of a calculation performed in ROCKEY4ND, using input provided by the developer
and the RY_CALCULATE2 function.

Input parameters:

function = RY_CALCULATE2

*handle = ROCKEY4ND's handle

*Ip1 = Start point of calculation

*Ip2 = Seed Code (32-bit)

*p1 = Input value 1

*p2 = Input value 2

*p3 = Input value 3

*p4 = Input value 4

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will result in the addresses p1, p2, p3 and p4 populated with the results of the calculation.

7.2.16 Calculate 3 (RY_CALCULATE3)

Objective: To return results of a calculation performed in ROCKEY4ND, using input provided by the developer and
the RY_CALCULATES3 function.

Input parameters:

function = RY_CALCULATE3

*handle = ROCKEY4ND's handle

*Ip1 = Start point of calculation

*Ip2 = Module number

*p1 = Input value 1

*p2 = Input value 2

*p3 = Input value 3

*p4 = Input value 4

Return value:

A return value = “0” indicates that the function worked correctly. Any other return value indicates an error. A
successful operation will result in the addresses p1, p2, p3 and p4 populated with the results of the calculation.

7.2.17. Decrease Module Unit (RY_DECREASE)

Objective: To decrease the value in a specified ROCKEYAND module by “1”.
Input parameters:

function = RY_DECREASE

*handle = ROCKEY4ND's handle

*p1 = Module number

Return value:

FEITIAN Rockey4ND User’s Guide

A return value = “0” indicates that the function worked correctly. Any other return value indicates
an error. A successful operation will reduce the value stored in module *p1 by “1”.

7.3 Error Codes

ERR_SUCCESS 0 //No error

ERR_NO_ROCKEY 3 //No ROCKEY4ND found

ERR_INVALID_PASSWORD 4 //ROCKEYAND found, with incorrect basic
password

ERR_INVALID_PASSWORD_OR_ID 5 //Incorrect password or hardware 1D

ERR_SETID 6 //Error setting hardware ID

ERR_INVALID_ADDR_OR_SIZE 7 //Incorrect target address or length

ERR_UNKNOWN_COMMAND 8 //Unknown command

ERR_NOTBELEVEL3 9 //Internal error

ERR_READ 10 //Error reading data

ERR_WRITE 11 //Error writing data

ERR_RANDOM 12 //Random number error

ERR_SEED 13 //Seed error

ERR_CALCULATE 14 //Calculation error

ERR_NO_OPEN 15 //Dongle not opened before operation

ERR_OPEN_OVERFLOW 16 //Too many dongles opened (>16)

ERR_NOMORE 17 //No more dongle(s) can be found

ERR_NEED_FIND 18 //Use FindNext without Find

ERR_DECREASE 19 //Decrement error

FEITIAN Rockey4ND User’s Guide

ERR_AR_BADCOMMAND 20 //Algorithm command error

ERR_AR_UNKNOWN_OPCODE 21 //Algorithm operator error

ERR_AR_WRONGBEGIN 22 //The first command of algorithm contains a
constant

ERR_AR_WRONG_END 23 //The last command of algorithm contains a
constant

ERR_AR_VALUEOVERFLOW 24 //The value of the constant of the algorithm is

greater than 63

ERR_TOOMUCHTHREAD 25 //The number of the threads that open a dongle in

a process is greater than 100

ERR_RECEIVE_NULL 0x100 //Cannot receive
ERR_UNKNOWN_SYSTEM 0x102 //Unknown operating system
ERR_UNKNOWN Oxffff //Unknown error

7.4 Basic Application Examples

FEITIAN offers several program examples to help beginners quickly familiarize themselves with ROCKEY. These
sample programs are intentionally simplified to illustrate various security objectives and should not be construed
as sufficient for most real world implementations. These samples are for demonstration purposes only. This
document is not intended to illustrate how to take full advantage of the ROCKEY software protection system —
that will depend on particularities of the developer, the application and the licensing objectives. Section 7.5
Advanced Application Examples are also a good reference but the developer will need to determine the best
protection method given his own constraints and objectives.
Some key points that you need to pay attention to when programming:
e P3 and P4 are Advanced passwords enabling the developers to write to the dongles. Each of them should
be set to a valid value only in this case. They should be set to 0 in the software delivered to end users.
e Be sure that none of the address parameters in the ROCKETAND functions are Null pointers. For example,
even if you do not require the Buffer, but it cannot be null, otherwise the result is unpredictable.
The following sample programs are written in VC 6.0. Let us discuss how to perform the required functions step
by step from an original program. Software developers who develop software in other languages please do not
skip this section. There are no special developing skills for the C language. Most software developers will

understand the concepts illustrated here.

7.4.1 Original Program — Step O

This program is the original program before it is protected with ROCKEY4ND.

FEITIAN Rockey4ND User’s Guide

#include <windows.h>

#include <stdio.h>

void main()

{

// Anyone begin from here.

printf("Hello FeiTian!\n");

7.4.2 Find Dongle — Step 1

We add an operation to find the ROCKEY at the beginning of the program. If the dongle is found the program will
continue. If it is not found the program will exit.

#include <windows.h>
#include <stdio.h>

#include "Rockey4_ND_32.h" // Include ROCKEYAND Header File

void main()

{

//
WORD retcode;

WORD handle, p1, p2, p3, p4;
DWORD lp1, Ip2;
BYTE buffer[1024];

pl = Oxcd4c;
p2 = Oxc8f8;
p3 =0; // Program needn't Password3, Set to 0
p4 =0; // Program needn't Password4, Set to 0

// Try to find specified ROCKEY4ND

retcode = Rockey(RY_FIND, &handle, &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found

{

printf("ROCKEY not found!\n");
return;

/!

printf("Hello FeiTian!\n");

FEITIAN Rockey4ND User’s Guide

}

It is a very simple security objective. We only need to call the function “Find a ROCKEY dongle”. You may refer to
the introduction of the function “Find a ROCKEY dongle” in the section “ROCKEY4AND API Services”.

For testing purposes you might try to run this program with and without the ROCKEY4AND dongle attached to the
computer.

7.4.3 Open Dongle — Step 2

We add an operation to open ROCKEY with specified passwords at the beginning of the program. If the dongle can
be opened the program continues. Otherwise, the program exits.

#include <windows.h>
ttinclude <stdio.h>

#include "Rockey4 ND_32.h" // Include ROCKEY4ND Header File

void main()

{

//
WORD retcode;

WORD handle, p1, p2, p3, p4; // ROCKEY4ND Variable
DWORD lp1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4ND Variable

pl = Oxc44c; //ROCKEYAND Demo Passwordl
p2 = 0xc8f8; // ROCKEYAND Demo Password?2
p3 =0; // Program needn't Password3, Set to O
p4 =0; // Program needn't Password4, Set to O

// Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{
printf("ROCKEY not found!\n");
return;

retcode = Rockey(RY_OPEN, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error

printf("Error Code: %d\n", retcode);
return;

FEITIAN Rockey4ND User’s Guide

/!

printf("Hello FeiTian!\n");

retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
printf("Error Code: %d\n", retcode);
return;

}

1

7.4.4 User Memory — Steps 3 and 4

Initialize ROCKEY with Editor or API. Write “Hello FEITIAN!” to the dongle and read it back from the dongle. See
Step 3 and Step 4.
Initialize ROCKEY and write “Hello FEITIAN!” to it — Step 3:

#include <windows.h>
#include <stdio.h>
#include "Rockey4_ND_32.h" // Include ROCKEY4ND Header File

void main()

{

//
WORD retcode;

WORD handle, p1, p2, p3, p4; // ROCKEY4ND Variable
DWORD lp1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4ND Variable

pl = Oxc44c; //ROCKEYAND Demo Passwordl
p2 = 0xc8f8; // ROCKEYAND Demo Password?2
p3 =0; // Program needn't Password3, Set to O
p4 =0; // Program needn't Password4, Set to O

// Try to find Rockey

retcode = Rockey(RY_FIND, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found

{
printf("ROCKEY not found!\n");

FEITIAN Rockey4ND User’s Guide

return;

retcode = Rockey(RY_OPEN, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;

}

pl=0; //Pos

p2 =14; //Length

strcpy((char*)buffer, "Hello FeiTian! ");
retcode = Rockey(RY_WRITE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;

printf("Write: %s\n", buffer);

retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
printf("Error Code: %d\n", retcode);
return;

}

1

In Step 3 we have written “Hello FEITIAN!” to the ROCKEY dongle. In Step 4 we will read the contents of the
dongle.
Read dongle contents — Step 4:

#include <windows.h>
#include <stdio.h>

#include "Rockey4_ND_32.h" // Include ROCKEY4ND Header File

void main()

{

FEITIAN

//

/l
WORD retcode;

WORD handle, p1, p2, p3, p4; // ROCKEY4ND Variable
DWORD lp1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4ND Variable

pl = Oxc44c; //ROCKEYAND Demo Passwordl
p2 = 0xc8f8; // ROCKEYAND Demo Password?2
p3 =0; // Program needn't Password3, Set to 0
p4 =0; // Program needn't Password4, Set to O

// Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{
printf("ROCKEY not found!\n");
return;

retcode = Rockey(RY_OPEN, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;

}

pl=0; //Pos

p2 =14; //Length

buffer[14] = 0;
retcode = Rockey(RY_READ, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);
return;

printf("%s\n", buffer);

retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode)
{

Rockey4ND User’s Guide

FEITIAN Rockey4ND User’s Guide

printf("Error Code: %d\n", retcode);
return;

}

7.4.5 Generate a true random number with ROCKEY - Step 5

Generate a random number when the program starts and write this random number to the dongle. The program
should check if the random number is correct during run-time. If a sharing device is installed to this computer,
and someone else runs this program also from another computer, another random number will be generated and
written to the dongle. Thus the program on the first computer will be terminated since the random number is not
correct.

#include <windows.h>
ttinclude <stdio.h>

#include "Rockey4 ND_32.h" // Include ROCKEY4ND Header File

void main()

{

//
WORD retcode;

WORD handle, p1, p2, p3, p4; // ROCKEY4ND Variable
DWORD lp1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4ND Variable

pl = Oxc44c; //ROCKEYAND Demo Passwordl
p2 = 0xc8f8; // ROCKEYAND Demo Password?2
p3 =0; // Program needn't Password3, Set to O
p4 =0; // Program needn't Password4, Set to O

// Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Not found

{
printf("ROCKEY not found!\n");
return;

retcode = Rockey(RY_OPEN, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode) // Error

printf("Error Code: %d\n", retcode);
return;

retcode = Rockey(RY_RANDOM, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);
return;
}
printf("Random:%04X,%04X,%04X,%04X\n", p1,p2,p3,p4);

sprintf(buffer, "%04X", p1);

pl1=0; //Pos
p2=4; //Length
p3=1;

retcode = Rockey(RY_WRITE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error
{

printf("Error Code: %d\n", retcode);

return;

}
printf("Write: %s\n", buffer);

pl1=0; //Pos
p2=4; //Length

buffer[4] = 0;
retcode = Rockey(RY_READ, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);
return;

}
printf("Read: %s\n", buffer);

if(buffer)

printf("Hello FeiTian!\n");

FEITIAN Rockey4ND User’s Guide

else

exit(0);

retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);

if (retcode)

{
printf("Error Code: %d\n", retcode);
return;
}

}
7.4.6 Seed - Steps 6 and 7

Read the seed code return values with the Editor or API. The seed code calculation is performed inside the dongle
and the algorithm is confidential. You may verify the return codes or use the return codes in an encryption
routine. See Step 6 and Step 7.

Read the return codes of fixed seed code (0x12345678) - Step 6:

#include <windows.h>
#include <stdio.h>

#include "Rockey4_ND_32.h" // Include ROCKEY4ND Header File

void main()

{
WORD retcode;
WORD handle, p1, p2, p3, p4; // ROCKEY4ND Variable
DWORD lp1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4ND Variable

pl = Oxcd4c; //ROCKEY4AND Demo Passwordl

p2 = 0xc8f8; // ROCKEY4ND Demo Password?2
p3 =0; // Program needn't Password3, Set to O
p4 =0; // Program needn't Password4, Set to O

// Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Not found

{
printf("ROCKEY not found!\n");

return;

FEITIAN Rockey4ND User’s Guide

retcode = Rockey(RY_OPEN, &handle, &Ip1, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;

//seed Rockey

Ip2 = 0x12345678;

retcode = Rockey(RY_SEED, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;

printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

// Close Rockey
retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode)

{
printf("Error Code: %d\n", retcode);
return;

}
printf("\n");

getch();
}
Verify the return codes of the seed code to see if the program should be terminated - Step 7:
#include <windows.h>
#include <stdio.h>

#include "Rockey4_ND_32.h" // Include ROCKEY4ND Header File

void main()

{
WORD retcode;

WORD handle, p1, p2, p3, p4; // ROCKEY4ND Variable

FEITIAN

DWORD Ip1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4ND Variable

pl = Oxcd4c; //ROCKEY4AND Demo Passwordl
p2 = 0xc8f8; // ROCKEYAND Demo Password?2
p3 =0; // Program needn't Password3, Set to O
p4 =0; // Program needn't Password4, Set to O

// Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{
printf("ROCKEY not found!\n");
return;

retcode = Rockey(RY_OPEN, &handle, &Ip1, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);
return;

//seed Rockey
Ip2 = 0x12345678;
retcode = Rockey(RY_SEED, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);
return;

if (p1==0xD03A && p2==0x94D6 && p3==0x96A9 && p4==0x7F54)
printf("Hello FeiTian!\n");
else

{

printf("Hello error\n");

return;

Rockey4ND User’s Guide

FEITIAN Rockey4ND User’s Guide

// Close Rockey
retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
printf("Error Code: %d\n", retcode);
return;

}
7.4.7 User ID — Steps 8 and 9

Write the User ID to the dongle with the Editor or API. User ID may be a software version or product type and it
may also be used in some encryption schemes. See Step 8 and Step 9.

Note: Advanced passwords are needed for Step 8.

Initialize ROCKEY and write User ID to the dongle. See Step 8:
#include <windows.h>

#include <stdio.h>

#include "Rockey4_ND_32.h" // Include ROCKEY4ND Header File

void main()

{
//
WORD retcode;
WORD handle, p1, p2, p3, p4; // ROCKEY4ND Variable
DWORD Ip1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4AND Variable

pl = 0xc44c; //ROCKEY4AND Demo Passwordl
p2 = 0xc8f8; // ROCKEY4ND Demo Password2
p3 =0x0799; //ROCKEY4ND Demo Password3
p4 = 0xc43b; // ROCKEY4ND Demo Password4

// Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{

printf("ROCKEY not found!\n");

FEITIAN

return;

retcode = Rockey(RY_OPEN, &handle, &Ip1, &lp2, &pl, &p2, &p3, &p4, buffer);

if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;

Ip1 = 0x88888888;
retcode = Rockey(RY_WRITE_USERID, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;

printf("Write User ID: %08X\n", Ip1);

retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
printf("Error Code: %d\n", retcode);
return;

}

1

Verify the User ID. If the User ID is not 0x88888888 output “Hello DEMO!”. See Step 9:
#include <windows.h>

#include <stdio.h>

#include "Rockey4_ND_32.h" // Include ROCKEY4ND Header File

void main()

{

/!

WORD retcode;

Rockey4ND User’s Guide

FEITIAN Rockey4ND User’s Guide

WORD handle, p1, p2, p3, p4; // ROCKEY4ND Variable
DWORD lp1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4ND Variable

pl = Oxc44c; //ROCKEYAND Demo Passwordl
p2 = 0xc8f8; // ROCKEYAND Demo Password?2

p3=0; // Program needn't Password3, Set to 0
p4 =0; // Program needn't Password4, Set to O

// Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{
printf("ROCKEY not found!\n");
return;

retcode = Rockey(RY_OPEN, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error
{

printf("Error Code: %d\n", retcode);

return;

Ip1=0;
retcode = Rockey(RY_READ_USERID, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);
return;
}
if (Ip1==0x88888888)
printf("Hello FeiTian!\n");

else

{
printf("Hello DEMO\n");
return;
1

retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode)

FEITIAN Rockey4ND User’s Guide

printf("Error Code: %d\n", retcode);
return;

7.4.8 Module - Steps 10, 11, and 12

Set module value and attributes with Editor or API then check if the module is allowed to be used. Determine
whether to activate the associated application module. The module value may also be used by the program.
Check if the module is allowed to be decreased to limit the number of software executions. See Step 10, Step 11
and Step 12.

Note: Advanced passwords are needed for Step 10.

Initialize ROCKEY and set module value. For example we set module 0 to be valid and its value cannot be
decreased. See Step 10:

#include <windows.h>
ttinclude <stdio.h>

#include "Rockey4_ND_32.h" // Include ROCKEY4ND Header File

void main()

{
//
WORD retcode;
WORD handle, p1, p2, p3, p4; // ROCKEY4ND Variable
DWORD Ip1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4AND Variable

pl = 0xc44c; //ROCKEY4AND Demo Passwordl
p2 = 0xc8f8; // ROCKEY4AND Demo Password2
p3 =0x0799; //ROCKEY4ND Demo Password3
p4 = 0xc43b; // ROCKEY4ND Demo Password4

// Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{
printf("ROCKEY not found!\n");
return;

FEITIAN Rockey4ND User’s Guide

retcode = Rockey(RY_OPEN, &handle, &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);
return;

pl=0;
p2 =3;
p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle, &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode)
{
printf("Error Code: %d\n", retcode);
return;

printf("Set Moudle 0: Pass = %04X Decrease no allow\n", p2);

retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
printf("Error Code: %d\n", retcode);
return;

}

1

If module 0 is valid in the program, output “Hello FEITIAN!”. Otherwise terminate or exit the program. See Step
11:

#include <windows.h>

#include <stdio.h>
#include "Rockey4_ND_32.h" // Include ROCKEY4ND Header File

void main()
{
//
WORD retcode;
WORD handle, p1, p2, p3, p4; // ROCKEY4ND Variable
DWORD Ip1, Ip2; // ROCKEY4ND Variable

BYTE buffer[1024]; // ROCKEY4AND Variable

FEITIAN Rockey4ND User’s Guide

pl = 0xc44c; //ROCKEY4AND Demo Passwordl
p2 = 0xc8f8; // ROCKEYAND Demo Password?2
p3 =0; // Program needn't Password3, Set to 0
p4 =0; // Program needn't Password4, Set to O

// Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Not found
{
printf("ROCKEY not found!\n");
return;

retcode = Rockey(RY_OPEN, &handle, &Ip1, &lp2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;
}
pl=0;
retcode = Rockey(RY_CHECK_MOUDLE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
if (retcode)
{
printf("Error Code: %d\n", retcode);
return;
}
if (p2)
printf("Hello FeiTian!\n");
else
return;

retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode)

printf("Error Code: %d\n", retcode);

return;

FEITIAN Rockey4ND User’s Guide

}

In Step 10 we set p2=3(allowed software run times) and p3=1(Decrement allowed). That is to say module 0(p1=0)
sets the maximum software run time to 3. See Step 12:

#include <windows.h>
#include <stdio.h>

#include "Rockey4_ND_32.h" // Include ROCKEY4ND Header File

void main()

{

//
WORD retcode;

WORD handle, p1, p2, p3, p4; // ROCKEY4ND Variable
DWORD lp1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4ND Variable

pl = Oxc44c; //ROCKEYAND Demo Passwordl
p2 = 0xc8f8; // ROCKEYAND Demo Password?2
p3 =0; // Program needn't Password3, Set to O
p4 =0; // Program needn't Password4, Set to O

// Try to find specified Rockey
retcode = Rockey(RY_FIND, &handle, &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Not found

{
printf("ROCKEY not found!\n");
return;

retcode = Rockey(RY_OPEN, &handle, &Ip1, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);
return;

}
pl=0;
retcode = Rockey(RY_CHECK_MOUDLE, &handle, &lp1, &lp2, &pl, &p2, &p3, &p4, buffer);

FEITIAN Rockey4ND User’s Guide

if (retcode)
{
printf("Error Code: %d\n", retcode);
return;
}
if (p2!=1)
{
printf("Update Please!\n");
return;
1
if(p3==1)
{
p1=0;
retcode = Rockey(RY_DECREASE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if(retcode)
{
printf("Error Code: %d\n", retcode);
return;
}
1
/!

printf("Hello FeiTian!\n");

retcode = Rockey(RY_CLOSE, &handle, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)
{
printf("Error Code: %d\n", retcode);
return;
}
}

7.4.9 Collaboration — Step 13

Multi ROCKEY dongles with the same passwords may work on the same computer no matter whether the dongle
types are the same or not. The program can distinguish the dongles because every dongle has a unique hardware
ID. See Step 13:

FEITIAN Rockey4ND User’s Guide

#include <windows.h>
#include <stdio.h>

#include "Rockey4_ND_32.h" // Include ROCKEY4ND Header File

void main()

{

inti, rynum;

WORD retcode;

WORD handle[16], p1, p2, p3, p4; // ROCKEY4AND Variable
DWORD lp1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4ND Variable

pl = Oxcd4c; //ROCKEY4AND Demo Passwordl
p2 = 0xc8f8; // ROCKEY4ND Demo Password?2
p3 =0; // Program needn't Password3, Set to 0
p4 =0; // Program needn't Password4, Set to 0

// Try to find all Rockey
for (i=0;i<16;i++)
{
if (0==1i)
{
retcode = Rockey(RY_FIND, &handle[i], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE)
break;
}
else
{
// Notice : Ip1 = Last found hardID
retcode = Rockey(RY_FIND_NEXT, &handleli], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE)
break;

if (retcode) // Error
{
printf("Error Code: %d\n", retcode);

return;

printf("Found Rockey: %08X ", Ip1);

retcode = Rockey(RY_OPEN, &handleli], &Ip1, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);

return;

}
printf("\n");

rynum = i;

// Do our work

for (i=0;i<rynum;i++)

{
// Read Rockey user memory
pl1=0; //Pos
p2=12; //Length

buffer[12] = 0;

retcode = Rockey(RY_READ, &handle[i], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode) // Error

{

printf("Error Code: %d\n", retcode);
return;

}
printf("%s\n", buffer); // Output

Ip1=0;
retcode = Rockey(RY_READ_USERID, &handle[i], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);

return;

}
printf("Read User ID: %08X\n", lp1);

p1=0;

FEITIAN Rockey4ND User’s Guide

retcode = Rockey(RY_CHECK_MOUDLE, &handle[i], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);
return;

printf("Check Moudle 0: ");
if (p2)

printf("Allow ");
else

printf("No Allow ");

if (p3)

printf("Allow Decrease\n");
else
printf("Not Allow Decrease\n");

// Close all opened Rockey
for (i=0;i<rynum;i++)

{
retcode = Rockey(RY_CLOSE, &handlel[i], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
printf("Error Code: %d\n", retcode);
return;
}
1
1

A maximum of 16 dongles may be attached to the same computer at the same time. The program can access any
dongle you specify.

In the above program we defined a handle array to save the opened ROCKEY handle to prepare for the next
operation on the specified dongle. When we find the dongle we open it and we close all opened ROCKEY handles
before exiting the program. Developers are better off operating in this manner, but for a large program it is OK to
open/close the dongle just once at the beginning/end of the program. Frequent open and close operations will
reduce performance. We open the dongle in share mode so that other programs may also simultaneously operate
with the dongle.

You can find the source code of the samples above from the CD-ROM or under Samples directory.

FEITIAN Rockey4ND User’s Guide

Note: We called function RY_OPEN and RY_CLOSE in the above program. We must open ROCKEY before all
operations with the exceptions of RY_FIND and RY_FIND_NEXT. This is similar to the operation on the disk files.

You should close the dongle immediately after finishing dongle related operations.

7.5 Advanced Application Examples

This section is dedicated to providing additional illustrative examples of methods you may employ to protect your
software with ROCKEY4AND. These examples are intentionally simplified and not intended to be a complete
solutions for software protection. The method appropriate for your application will depend on constraints set by
your licensing agreement and other factors. (If you are familiar with the API call already, you may skip to Chapter
8 ROCKEY4ND Hardware Algorithms.)

7.5.1 User Data Zone advanced application

In Step 14 we will write “Hello FEITIAN!” to User Data Zone (UDZ). In general we would write “Hello FEITIAN!” to
the UDZ as one character string, but security may be enhanced by writing it in two parts and then later combining

the character strings.
#include <windows.h>
#include <stdio.h>

#include <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
1
void main()
{

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;

BYTE buffer[1024];

BYTE buf[1024];

inti, j;

pl = Oxcé44c;
p2 = 0xc8f8;
p3=0;
p4 =0;

FEITIAN

retcode = Rockey(RY_FIND, &handle[0], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

i=1;

while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;

if (retcode)

{
ShowERR(retcode);
return;

1

retcode = Rockey(RY_OPEN, &handle[i], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

i++;
printf("Find Rock: %08X\n", lp1);

}
printf("\n");

for (j=0;j<i;j++)

Rockey4ND User’s Guide

pl=0;
p2 =10;
p3=1;
strcpy((char*)buffer, "Hello ");
retcode = Rockey(RY_WRITE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Write: Hello \n");

pl=12;
p2 =12;
p3=1;
strcpy((char*)buffer, "FeiTian!");
retcode = Rockey(RY_WRITE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Write: FeiTian\n");

pl=0;

p2 = 10;

memeset(buffer, 0, 64);
retcode = Rockey(RY_READ, &handle[j], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Read: %s\n", buffer);

pl=12;

FEITIAN Rockey4ND User’s Guide

p2 =12;

memeset(buf, 0, 64);
retcode = Rockey(RY_READ, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buf);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Read: %s\n", buf);

printf("\n");
printf("%s\n", strcat(buffer,buf));

retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &Ip2, &p1l, &p2, &p3, &p4, buffer);

if (retcode)
{
ShowERR(retcode);
return;
}
getch();
}
}

Step 15: You may write a serial number in the User Data Zone (UDZ) and then verify it during run time as a means

of protecting and controlling a program module.

#include <windows.h>
#include <stdio.h>

#include <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)
{

if (retcode == 0) return;
printf("Error Code: %d\n", retcode);

void main()

{

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];

inti, j;

pl = Oxcd4c;
p2 = 0xc8f8;
p3 = 0x0799;

p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

i=1;

while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handleli], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;

if (retcode)

{
ShowERR(retcode);
return;

retcode = Rockey(RY_OPEN, &handle[i], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);

return;

i++;

printf("Find Rock: %08X\n", lp1);
}
printf("\n");

for (j=0;j<i;j++)

p2 = 12;
p3=1;
strcpy((char*)buffer, "alb2c3d4e5f6");

retcode = Rockey(RY_WRITE, &handlel[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Write:alb2c3d4e5f6\n");

pl=0;

p2=2;

memeset(buffer, 0, 64);
retcode = Rockey(RY_READ, &handle[j], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Read: %s\n", buffer);

FEITIAN Rockey4ND User’s Guide

if (Istrcmp(buffer,"al"))
printf("Run Module 1\n");
else

break;

pl=2;
p2=2;

memeset(buffer, 0, 64);
retcode = Rockey(RY_READ, &handle[j], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Read: %s\n", buffer);

if (Istrcmp(buffer,"b2"))
printf("Run Module 2\n");
else
break;

retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("\n");
getch();

}

}

Step 16: Write a number to the UDZ and decrease it during run time as a means of controlling a software module.
We recommend you use the encryption idea in Step 12 combined with Step 16.

#include <windows.h>

FEITIAN Rockey4ND User’s Guide

#include <stdio.h>
#include <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
1
void main()
{

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;

BYTE buffer[1024];

inti, j,num;

pl = Oxcd4c;

p2 = 0xc8f8;

p3=0;
p4 =0;

retcode = Rockey(RY_FIND, &handle[0], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

i=1;
while (retcode == 0)
{
retcode = Rockey(RY_FIND_NEXT, &handlel[i], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);
return;

retcode = Rockey(RY_OPEN, &handle[i], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);

return;

i++;

printf("Find Rock: %08X\n", Ip1);
}
printf("\n");

for (j=0;j<i;j++)
{
pl=0;
p2=2;
p3=1;
strcpy((char*)buffer, "03");
retcode = Rockey(RY_WRITE, &handlel[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
1
printf("Write: 03\n");
pl=0;
p2=1;
memset(buffer, 0, 64);

retcode = Rockey(RY_READ, &handle[j], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Read: %s\n", buffer);

num=atoi(buffer);

if(num)
{
printf("Hello FeiTian\n");
num--;

else

return;
1
pl=0;
p2=1;
sprintf(buffer, "%Id", num);
retcode = Rockey(RY_WRITE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Write: %ld\n",num);

retcode = Rockey(RY_CLOSE, &handle[j], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("\n");

7.5.2 Seed code advanced applications

FEITIAN Rockey4ND User’s Guide

Step 17: You may use different seed codes for different software modules or in different places in the application.
Then verify the seed codes in the applications.

#include <windows.h>

#include <stdio.h>
#include <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
1
void main()
{

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];

inti, j;
pl = Oxcd4c;
p2 = 0xc8f8;
p3=0;

p4 =0;

retcode = Rockey(RY_FIND, &handle[0], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

i=1;
while (retcode == 0)
{
retcode = Rockey(RY_FIND_NEXT, &handlel[i], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);
return;

retcode = Rockey(RY_OPEN, &handle[i], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);

return;

i++;
printf("Find Rock: %08X\n", Ip1);

}
printf("\n");

for (j=0;j<i;j++)

{

Ip2 = 0x12345678;
retcode = Rockey(RY_SEED, &handle[j], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

if(p1==0xD03A && p2==0x94D6 && p3==0x96A9 && p4==0x7F54)
printf("Hello Fei!\n");
else
break;

FEITIAN Rockey4ND User’s Guide

Ip2 = 0x87654321;
retcode = Rockey(RY_SEED, &handle[j], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

if(p1==0xB584 && p2==0xD64F && p3==0xC885 && p4==0x5BA0)
printf("Hello Tian!\n");

else

break;

Ip2 = 0x18273645;
retcode = Rockey(RY_SEED, &handle[j], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

if(p1==0x2F6D && p2==0x27F8 && p3==0xB3EE && p4==0xBE5A)
printf("Hello OK!\n");
else
break;

retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}
printf("\n");
getch();

}
In Step 18 we use four outputs of the seed code function to encrypt and decrypt a character string. Be sure you
only include the “decrypt” portion of the code in the application version that is sent to end users.

#include <windows.h>

FEITIAN Rockey4ND User’s Guide

#include <stdio.h>
#include <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
1
void main()
{

char str[20] = "Hello FeiTian!";
DWORD mykey = 12345678;
int n, slen;

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];

int ij;

pl = Oxcd4c;
p2 = 0xc8f8;
p3 = 0x0799;

p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

while (retcode == 0)

{
retcode = Rockey(RY_FIND_NEXT, &handleli], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)

ShowERR(retcode);

return;

retcode = Rockey(RY_OPEN, &handle[i], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

i++;

printf("Find Rock: %08X\n", Ip1);
}
printf("\n");

for (j=0;j<i;j++)
{
// Encrypt my data
slen = strlen(str);
Ip2 = mykey;
retcode = Rockey(RY_SEED, &handle[j], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);
return;

}

for (n=0;n<slen;n++)

{
str[n] = str[n] + (char)pl + (char)p2 + (char)p3 + (char)p4;

}

printf("Encrypted data is %s\n", str);

// Decrypt my data
Ip2 = mykey;

FEITIAN Rockey4ND User’s Guide

retcode = Rockey(RY_SEED, &handle[j], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;

for (n=0;n<slen;n++)

{
str[n] = str[n] - (char)p1 - (char)p2 - (char)p3 - (char)p4;

}
printf("Decrypted data is %s\n", str);

retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("\n");
getch();

}

7.5.3 User ID advanced applications

Step 19: Some developers will write the current date to the UID when initializing the dongles. During runtime the
software may compare the current system time with the date stored in the UID. The program would take

appropriate actions or continue based on the results of the comparison.

#include <windows.h>

#include <stdio.h>
#include <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)
{

if (retcode == 0) return;
printf("Error Code: %d\n", retcode);

void main()

{

WORD handle[16], p1, p2, p3, p4, retcode;
DWORD Ip1, Ip2;
BYTE buffer[1024];

BYTE buf[1024];

inti, j;
SYSTEMTIME st;
pl = Oxcé44c;

p2 = 0xc8f8;

p3 = 0x0799;

p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Find Rock: %08X\n", Ip1);
retcode = Rockey(RY_OPEN, &handle[0], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

i=1;

while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handleli], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)

{
ShowERR(retcode);

return;

retcode = Rockey(RY_OPEN, &handle[i], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

i++;

printf("Find Rock: %08X\n", lp1);
}
printf("\n");

for (j=0;j<i;j++)

{
Ip1 =0x20021101;
retcode = Rockey(RY_WRITE_USERID, &handle[j], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
1
printf("Write User ID: %08X\n", Ip1);
Ip1=0;
retcode = Rockey(RY_READ_USERID, &handle[j], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
1

printf("Read User ID: %08X\n", lIp1);

sprintf(buffer,"%08X",Ip1);
GetLocalTime(&st);
printf("Date:%04d%02d%02d\n",st.wYear,st.wMonth,st.wDay);

FEITIAN Rockey4ND User’s Guide

sprintf(buf,"%04d%02d%02d",st.wYear,st.wMonth,st.wDay);
if(strcmp(buf,buffer)>=0)

{
printf("ok!\n");

else
break;

retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

printf("\n");
getch();

7.5.4 Module advanced applications

Step 20: Module encryption allows you to selectively control portions of your application with the ROCKEYAND

modules.

#include <windows.h>

#include <stdio.h>
#include <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
1
void main()
{

WORD handle[16], p1, p2, p3, p4, retcode;

DWORD lp1, Ip2;
BYTE buffer[1024];

FEITIAN

inti, j;

pl = Oxc44c;
p2 = 0xc8f8;
p3 = 0x0799;
p4 = 0xc43b;

{
retcode = Rockey(RY_FIND, &handle[0], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}
printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

i=1;

while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handleli], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;

if (retcode)

{
ShowERR(retcode);
return;

1

retcode = Rockey(RY_OPEN, &handle[i], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

Rockey4ND User’s Guide

i++;

printf("Find Rock: %08X\n", Ip1);

}
printf("\n");

for (j=0;j<i;j++)
{
pl=0;
p2 = 0x2121;
p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle 0: Pass = %04X Decrease no allow\n", p2);

retcode = Rockey(RY_CHECK_MOUDLE, &handle[j], &Ip1, &lp2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

ShowERR(retcode);
return;
1
printf("Check Moudle 0: ");
if (p2)
printf("Run Modul 1'\n");
else
break;

printf("\n");

pl=38;
p2 = OXFFFF;

p3=0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

FEITIAN Rockey4ND User’s Guide

}
}

ShowERR(retcode);
return;

}
printf("Set Moudle 8: Pass = %04X Decrease no allow\n", p2);

pl=8;
retcode = Rockey(RY_CHECK_MOUDLE, &handle[j], &Ip1, &lp2, &p1, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);
return;
1
printf("Check Moudle 8: ");
if (p2)
printf("Run Modul 2!");
else
break;

retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &Ip2, &p1l, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("\n");

Step 21: This program discussed how to perform multi-module encryption and check the status of the modules.

Many applications are segmented into program modules that users may choose or purchase separately. For

example, a user may purchase three of four available application modules and the licensing policy would allow

the user to execute only those modules that were purchased. ROCKEY4ND modules may be used to enforce this

licensing scheme.

#include <windows.h>

#include <stdio.h>
#include "Rockey4_ND_32.h" // Include ROCKEY4ND Header File

void main()

FEITIAN Rockey4ND User’s Guide

{

inti, j, rynum;
WORD retcode;
DWORD HID[16];

WORD handle[16], p1, p2, p3, p4; // ROCKEY4AND Variable
DWORD lp1, Ip2; // ROCKEY4ND Variable
BYTE buffer[1024]; // ROCKEY4ND Variable

pl = Oxcd4c; //ROCKEY4AND Demo Password1

p2 = 0xc8f8; // ROCKEY4ND Demo Password?2
p3=0; // Program needn't Password3, Set to 0
p4 =0; // Program needn't Password4, Set to 0

// Try to find all Rockey
for (i=0;i<16;i++)
{
if (0==1i)
{
retcode = Rockey(RY_FIND, &handlel[i], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;
}
else
{
// Notice : Ip1 = Last found hardID
retcode = Rockey(RY_FIND_NEXT, &handleli], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;

if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;

}

printf("Found Rockey: %08X\n", Ip1);
HID[i] = lp1; // Save HardID
retcode = Rockey(RY_OPEN, &handle[i], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error
{
printf("Error Code: %d\n", retcode);

FEITIAN Rockey4ND User’s Guide

return;
}

}
printf("\n");

rynum = i;

// Do our work
for (i=0;i<rynum;i++)

{

printf("Rockey %08X module status: ", HID[i]);

for (j=0;j<16;j++)

{

pl=j; // Module No

retcode = Rockey(RY_CHECK_MOUDLE, &handle[i], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode) // Error

{
printf("Error Code: %d\n", retcode);
return;

}

if (p2) printf("0");
else printf("X");

}

printf("\n");

}

// Close all opened Rockey

for (i=0;i<rynum;i++)

{

retcode = Rockey(RY_CLOSE, &handlel[i], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{

printf("Error Code: %d\n", retcode);

return;

}

}

The above program searches all dongles with the same passwords attached to the computer and displays the
status of every module in every listed dongle. “O” means that the module may be used and is not zero; “X” means

FEITIAN Rockey4ND User’s Guide

that the module cannot be used. In a protection scheme that relies on ROCKEYAND modules this program would
help the developer identify modules that are usable from ones that should be terminated.

7.5.5 The same code dongle advanced applications

If you have several software products but only a single purchase code — meaning that the passwords are all the
same — you may use the solution indicated below to differentiate the dongles.

In Step 22 the UDZ is used to distinguish the dongles with the same passwords. For example, the dongles with
UDZ content of “Ver 10”correspond to software A.

#include <windows.h>

#include <stdio.h>
#include <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
1
void main()
{

WORD handle[16], p1, p2, p3, p4, retcode;
WORD handleEnd;

DWORD Ip1, Ip2;
BYTE buffer[1024];

inti, j;

pl = Oxcé44c;
p2 = 0xc8f8;
p3 = 0x0799;
p4 = 0xc43b;

{
retcode = Rockey(RY_FIND, &handle[0], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

i=1;

while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handleli], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;

if (retcode)

{
ShowERR(retcode);
return;

1

retcode = Rockey(RY_OPEN, &handle[i], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode)

ShowERR(retcode);
return;

i++;

printf("Find Rock: %08X\n", lp1);
}
printf("\n");

for (j=0;j<i;j++)
{
/*p1=0;

p2=5;
p3=1;
strcpy((char*)buffer, "Ver10");
retcode = Rockey(RY_WRITE, &handle[j], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

ShowERR(retcode);
return;

}
printf("Write:%s\n",buffer);

*/
pl=0;
p2 =5;

memeset(buffer, 0, 64);
retcode = Rockey(RY_READ, &handle[j], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Read: %s\n", buffer);

if (Istrcmp(buffer,"Ver10"))

{
handleEnd=handlelj];
break;
1
}
{ // A
retcode = Rockey(RY_RANDOM, &handleEnd, &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
1

printf("Random: %04X\n", p1);

Ip2 = 0x12345678;
retcode = Rockey(RY_SEED, &handleEnd, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

FEITIAN Rockey4ND User’s Guide

printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

retcode = Rockey(RY_CLOSE, &handleEnd, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("\n");

}
}

In Step 23 the UID is used to distinguish the dongles with the same passwords. For example, dongles with UID of
“11111111” (hexadecimal) correspond to software A.

#include <windows.h>

#include <stdio.h>
#include <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == 0) return;
printf("Error Code: %d\n", retcode);
1
void main()
{

WORD handle[16], p1, p2, p3, p4, retcode;
WORD handleEnd;

DWORD lp1, Ip2;

BYTE buffer[1024];

inti, j;

pl = Oxc44c;
p2 = Oxc8f8;
p3 = 0x0799;
p4 = 0xc43b;

FEITIAN

retcode = Rockey(RY_FIND, &handle[0], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Find Rock: %08X\n", Ip1);

retcode = Rockey(RY_OPEN, &handle[0], &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

i=1;

while (retcode == 0)

{

retcode = Rockey(RY_FIND_NEXT, &handleli], &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE) break;

if (retcode)

{
ShowERR(retcode);
return;

}

retcode = Rockey(RY_OPEN, &handle[i], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);

return;

i++;

printf("Find Rock: %08X\n", lp1);
}
printf("\n");

Rockey4ND User’s Guide

for (j=0;j<i;j++)

{

/*lp1=0x11111111;
retcode = Rockey(RY_WRITE_USERID, &handle[j], &Ip1, &Ip2, &p1l, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Write User ID: %08X\n", Ip1);

*/

Ipl1=0;
retcode = Rockey(RY_READ_USERID, &handle[j], &Ip1, &Ip2, &p1, &p2, &p3, &p4, buffer);
if (retcode)

{

ShowERR(retcode);
return;

}

if(lp1==0x11111111)

{
handleEnd=handle[j];
break;

{7/ A

p2 =12;
p3=1;

strcpy((char*)buffer, "Hello Feitian!");

retcode = Rockey(RY_WRITE, &handleEnd, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Write: %s\n",buffer);

p2 =12;

buffer[512]=0;
retcode = Rockey(RY_READ, &handleEnd, &Ip1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Read: %s\n",buffer);

retcode = Rockey(RY_RANDOM, &handleEnd, &lp1, &Ip2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Random: %04X\n", p1);

Ip2 = 0x12345678;
retcode = Rockey(RY_SEED, &handleEnd, &lp1, &Ip2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

retcode = Rockey(RY_CLOSE, &handleEnd, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

1

printf("\n");

FEITIAN

Rockey4ND User’s Guide

Chapter 8. ROCKEY4AND Hardware Algorithms

Developers may define their own algorithms and securely store them inside ROCKEY4AND. The dongle may then be
used to calculate a result, and the result used by the application. Since the ROCKEY4ND’s User Algorithm Zone
(UAZ) is unreadable, even by the manufacturer, this type of software protection is potentially very powerful.
Developers may use either the ROCKEY editor or the RY_WRITE_ARITHMETIC function to write algorithms to the
dongle.

8.1 ROCKEY User Defined Algorithm Introduction

8.1.1 Instruction Format

All instructions must be in the following format:

regl = reg2 op reg3/value

regl, reg2 and reg3 are registers. value is a figure. op is an operator.For example:
A=A+B

ROCKEY supports the following operators: +, -, <, *, A&, |, and ?.

value is a decimal number between 0 and 63.

Note: “?” operator is used for comparison.

For example, the results of “C=A ? B” are listed below:

C A?B B?A
A<B 0 FFFF
A=B FFFF FFFF
A>B FFFF 0

It will write either “FFFF” or “0” to parameter C according to the table above.

First let us have a look at the algorithm example we will write to the dongle:

A=A+B,B=B+E C=A*F,D=B+C,H=HA"H

A, B, C... are registers in the dongle. There are a total of eight 16-bit registers in the dongle and they are designed:
A, B ,C D, E F, GandH.

8.1.2 Internal Algorithms & Application Interface

FEITIAN offers 3 calculation functions to call the user-defined algorithms:

RY_CALCULATE1, RY_CALCULATE2, and RY_CALCULATES3.

These three functions are structurally similar. Data is passed and received by way of the memory addresses p1, p2,
p3, and p4.

When passing data to registers:

FEITIAN Rockey4ND User’s Guide

Register A =pl

Register B = p2

Register C = p3

Register D = p4

Register variables vary according to the calculation type: Register E, Register F, Register G, and Register H.
When receiving data from registers:

pl = Register A

p2 = Register B

p3 = Register C

p4 = Register D

Registers A, B, C and D are user interface variables. Registers E, F, G and H are internal variables.

8.1.3 Differences between the Three Functions

pl, p2, p3 and p4 correspond to registers A, B, C and D in all three calculation functions. These registers are used
nearly identically by the three calculation functions. The differences between the functions can be seen by
reviewing the results written to registers E, F, G and H.

When a developer’s ROCKEYAND internal program is called, registers A, B, C and D will be populated with data
from p1, p2, p3 and p4. The content of registers E, F, G and H will be initialized according to the calculation

function in use. See below:

Internal Variable RY_CALCULATE1
A P1
B P2
C P3
D P4
E High 16 bits of hardware ID
F Low 16 bits of hardware ID
G Value stored in module *Ip2
H Random number
Internal Variable RY_CALCULATE2
A P1
B P2
C P3
D P4
E Seed return value 1 (depending on the seed code in *Ip2)
F Seed return value 2 (depending on the seed code in *Ip2)
G Seed return value 3 (depending on the seed code in *Ip2)
H Seed return value 4 (depending on the seed code in *Ip2)

FEITIAN Rockey4ND User’s Guide

Internal Variable RY_CALCULATE3

P1
P2
P3
P4
Content of the module specified by *Ip2

Content of the module of *Ip2 + 1

Content of the module of *Ip2 + 2

I|O|MmMmMO|O|®m|>

Content of the module of *Ip2 + 3

8.1.4 API Interface of the User’s Applications

Below is the definition and description of the three calculation functions.

Function RY_CALCULATE1 (Calculation 1)
Objective Perform specified calculation
Input parameters function = RY_CALCULATE1

*handle = Handle of the dongle
*|p1 = Start point of calculation
*|p2 = Module number

*p1 = Input value 1

*p2 = Input value 2

*p3 = Input value 3

*p4 = Input value 4

Return value A value of 0 indicates that the function works properly. Any other value
indicates an error.

When the function is executed successfully;
*p1 = Return value 1
*p2 = Return value 2
*p3 = Return value 3

*p4 = Return value 4

Notes For example, if the algorithm in the dongleis: A=B+C
Then, the result by calling calculation 1 is: *p1 = *p2 + *p3

For example, if the algorithm in the dongleis: A=A+ G

FEITIAN

Rockey4ND User’s Guide

If *p1 = 0 when inputting, then you may figure out the content of the module
specified by *p1 = *Ip2 when returning, although you cannot read the content
of the module directly. If possible, you'd better verify the content of the
module with an algorithm, instead of comparing in the program.

Function

RY_CALCULATE2 (Calculation 2)

Objective

Perform specified calculation

Input parameters

function = RY_CALCULATE2
*handle = Handle of the dongle
*|p1 = Start point of calculation
*|p2 = Seed code

*pl = Input value 1

*p2 = Input value 2

*p3 = Input value 3

*p4 = Input value 4

Return value

A value of 0 indicates that the function works properly. Any other value
indicates an error.

When the function is executed successfully;

*pl = Return value 1
*p2 = Return value 2
*p3 = Return value3
*p4 = Return value 4

When the dongle is calling the algorithm by calculation 2, the initial values of

Notes
registers E, F, G, and H are the seed return value of *Ip2. In other words, the
dongle uses *Ip2 as the seed code and calls RY_SEED function, and puts the
return values into registers E, F, G, and H respectively for processing by the
user.
Function RY_CALCULATE3 (Calculation 3)
Objective Perform specified calculation

Input parameters

function = RY_CALCULATE3
*handle = Handle of the dongle
*|p1 = Start point of calculation
*|p2 = Start address of module
*pl = Input value 1

*p2 = Input value 2

*p3 = Input value 3

*p4 = Input value 4

FEITIAN

Rockey4ND User’s Guide

Return value

A value of 0 indicates that the function works properly. Any other value
indicates an error.

When the function is executed successfully;

*p1 = Return value 1
*p2 = Return value 2
*p3 = Return value 3
*p4 = Return value 4

Notes

When the dongle is calling the algorithm by calculation 3, the initial values of
registers E, F, G, and H are the contents of the successive 4 modules starting at
*|p2. For example:

the initial values of registers E, F, G, and H are as follows when calling
calculation 3 with *Ip2 = 0:
E = Content of module 0
F = Content of module 1
G = Content of module 2
F = Content of module 3
If the address of the module is greater than 63, the address will be wrapped.
For example, when calling calculation 3 with *Ip2 = 62, the initial values of
registers E, F, G, and H are as follows:
E = Content of module 62
F = Content of modle 63
G = Content of module 0
H = Content of module 1

8.1.5 Writing Self-defined Algorithms to Dongle

8.1.5.1 Writing Algorithms

Aside from the use of ROCKEY4AND Editor, developers can also use the interface RY_WRITE_ARITHMETIC to
develop a program for writing algorithms themselves.

Function

RY_WRITE_ARITHMETIC (Write algorithm)

Objective

Write algorithms as defined by developers

Input parameters

function = RY_WRITE_ARITHMETIC
*handle = Handle of the dongle
*p1 = Start point of the calculation

*puffer= String of algorithm instructions

Return value

A value of 0 indicates that the function works properly. Any other value
indicates an error.

For example:

FEITIAN Rockey4ND User’s Guide

strcpy(buffer , "A=A+E , A=A+F , A=A+G , A=A+H");
pl=3;
retcode= Rockey(RY_WRITE_ARITHMETIC , handle , &lpl , &lp2 , &pl , &p2 , &p3 , &p4 , buffer);

You can see that the algorithm to be written is placed into buffer and the instructions are separated by commas.
The first instruction will be set to the start of the algorithm and the last instruction will be set to the end of the
algorithm automatically. For example:

Address 3 of algorithm area: A=A+E

Address 4 of algorithm area: A=A+F

Address 5 of algorithm area: A=A+G

Address 6 of algorithm area: A=A+H

“3” is the start point of the algorithm in the dongle; and “6” is the end point of the algorithm in the dongle. After
executing the instruction at address 6, the program will go to the user part. The calling of the program in the
dongle must begin from the start point of the algorithm. If the calling point is not the start point of the algorithm,
4 random numbers will be returned.

8.1.5.2 Restrictions on Algorithm Instruction

There are some restrictions on algorithm instruction. They are described below with some example instructions:
A=A+B Valid instruction

D=D~D Valid instruction

A=B Invalid instruction, must be in the format of algorithm, suchas A=B | B

A=0 Invalid instruction, must be in the format of algorithm, suchas A=AMA

C=3*B Invalid instruction, the constant must be postfixed, for example, C=B * 3

D=3+4 Invalid instruction, only 1 constant is allowed in an instruction

A=A/B Invalid instruction, the division operater is not supported

H=E*200 Invalid instruction, the constant must be lower than 64

A =A*63 Valid or invalid instruction, constants are not allowed in the first and last instructions

8.2 User Defined Algorithm Examples

8.2.1 Basic Algorithm Application Examples

8.2.1.1 Calculation 1 example

First we write the algorithm (We only need to write the algorithm once. The code used to write the algorithm(s)
to the dongle does not appear in the application delivered to the end user.)

pl = 0;strcpy(buffer, "H=H"H, A=A*23, F=B*17, A=A+F, A=A+G, A=A<C, A=A~D, B=B”"B,
C=C~C,D=D"D"); retcode = Rockey(RY_WRITE_ARITHMETIC, handle, &1pl, &1p2, &pl, &p2, &p3,
&p4, buffer);

Then call the following algorithm from the program:

1pl = @; // Start point of calculation

1p2 = 7; // Module number

pl = 5; // Initial value of A
p2 = 3; // Initial value of B
p3 = 1; // Initial value of C
p4 = Oxffff; // Initial value of D

retcode = Rockey(RY_CALCULATE1l, handle, &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
The command begins to execute from instruction 0 (Ip1) of the UAZ and the registers are initialized as follows:

A=5(pl)

B=3(p2)

C=1(p3)

D = Oxffff (r4)

E = the upper 16-bit of HID

F = the lower 16-bit of HID

G = the value in module #7 (Ip2)

H = random number (16-bit)

Assuming that the value in module 7 is 0x2121, the result of this calculation will be:
((5*23 + 3*17 + 0x2121) < 1) " Oxffff = Oxbc71

Calculation 1 example codes — Step 24:

#tinclude <windows.h>

#tinclude <stdio.h>
#tinclude <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == @) return;
printf("Error Code: %d\n", retcode);

void main()

{
WORD handle[16], pl, p2, p3, p4, retcode;
DWORD 1p1, 1lp2;
BYTE buffer[1024];

int i, j;

char cmd[] = "H=H"H, A=A*23, F=B*17, A=A+F, A=A+G, A=A<C, A=A"D, B=B"B, C=C~C, D=D"D";

pl = Oxcéd4c;
p2 = Oxc8f8;

0x0799;
oxc43b;

p3
p4

retcode = Rockey(RY_FIND, &handle[@], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);

return;

}
printf("Find Rock: %@8X\n", 1pl);

retcode = Rockey(RY_OPEN, &handle[0], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;
¥
i=1;
while (retcode == 0)
{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &Ilpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);
return;

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;

}

i++;

printf("Find Rock: %@8X\n", 1lpl);

}
printf("\n");

for (j=0;j<i;j++)
{
/*
pl = 7;
p2 = 0x2121;
p3 = 0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Set Moudle 7: Pass = %04X Decrease no allow\n", p2);
printf("\n");
*/

pl = 0;
strcpy((char*)buffer, cmd);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lpl, &1p2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Write Arithmetic 1\n");

1p1l = o;
1p2 = 7;
pl = 5;
p2 = 3;
p3 = 1;
p4 = Oxffff;

retcode = Rockey(RY_CALCULATE1l, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)

ShowERR(retcode);
return;

}
printf("Calculate Input: pl=5, p2=3, p3=1, p4=0xffff\n");

printf("\n");
printf("Result = ((5%23 + 3*17 + 0x2121) < 1) ~ Oxffff = OxBC71\n");
printf("Calculate Output: pl=%x, p2=%x, p3=%X, p4=%x\n", pl, p2, p3, pd);

retcode = Rockey(RY_CLOSE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

printf("\n");
getch();

8.2.1.2 Calculation 2 example

In Step 25 we write algorithm ("A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H") to
the UAZ, and the calculation result is 0x7b17.

#tinclude <windows.h>

#tinclude <stdio.h>
#tinclude <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)
{

if (retcode == @) return;
printf("Error Code: %d\n", retcode);

void main()

{

WORD handle[16], pl, p2, p3, p4, retcode;
DWORD 1pl, 1p2;

BYTE buffer[1024];

int i, j;

char cmd1[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";

pl = Oxcd4c;
p2 = Oxc8f8;
p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[@], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);

return;

}
printf("Find Rock: %@8X\n", 1pl);

retcode = Rockey(RY_OPEN, &handle[0], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;
¥
i=1;
while (retcode == 0)
{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &1lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode == ERR_NOMORE) break;
if (retcode)
{
ShowERR(retcode);
return;

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

i++;

printf("Find Rock: %@8X\n", 1lpl);

}
printf("\n");

for (j=0;j<i;j++)
{

/*
1p2 = 0x12345678;
retcode = Rockey(RY_SEED, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Seed: %04X %04X %04X %04X\n", pl, p2, p3, p4);
printf("\n");

*/

pl = 10;

strcpy((char*)buffer, cmdl);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lpl, &1p2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Write Arithmetic 2\n");

1pl = 10;
1p2 0x12345678;
pl = 1;

p2 = 2;
p3 = 3;
p4 = 4;

retcode = Rockey(RY_CALCULATE2, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Calculate Input: pl=1, p2=2, p3=3, p4=4\n");

printf("\n");
printf("Result =d@3a + 94d6 + 9629 + 7f54 + 1 + 2 + 3 + 4=0x7b17\n");
printf("Calculate Output: pl=%x, p2=%x, p3=%x, p4=%x\n", pl, p2, p3, pd);

retcode = Rockey(RY_CLOSE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

printf("\n");
getch();

8.2.1.3 Calculation 3 example
In Step 26 we write algorithm ("A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H") to UAZ, and the

calculation result is 0x14

#tinclude <windows.h>

#tinclude <stdio.h>
#tinclude <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)
{

if (retcode == @) return;
printf("Error Code: %d\n", retcode);

void main()

{
WORD handle[16], pl, p2, p3, p4, retcode;

DWORD 1pl, 1p2;
BYTE buffer[1024];
int i, j;

char cmd2[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";

pl = Oxcd4c;
p2 = Oxc8f8;
p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[@], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

}
printf("Find Rock: %08X\n", 1lpl);

retcode = Rockey(RY_OPEN, &handle[@], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;
¥
i=1;
while (retcode == 0)
{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &Ilp2, &pl, &p2, &p3, &p4,
buffer);

if (retcode == ERR_NOMORE) break;

if (retcode)

{

ShowERR(retcode);
return;

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;

}

i++;

printf("Find Rock: %@8X\n", 1lpl);

}
printf("\n");

for (j=0;j<i;j++)

{

/*

pl = 0;

p2 = 1;

p3 = 0;

retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);

if (retcode)

{

ShowERR(retcode);
return;

}

printf("Set Moudle ©: Pass = %04X Decrease no allow\n", p2);

pl = 1;

p2 = 2;

p3 = 0;

retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);

if (retcode)

{

ShowERR(retcode);

return;

}
printf("Set Moudle 1: Pass = %04X Decrease no allow\n", p2);

pl = 2;
p2 = 3;
p3 = 0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle 2: Pass = %04X Decrease no allow\n", p2);

pl = 3;
p2 = 4;
p3 = 0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Set Moudle 3: Pass = %04X Decrease no allow\n", p2);
printf("\n");

*/
pl = 17;
strcpy((char*)buffer, cmd2);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lpl, &1p2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Write Arithmetic 3\n");

1p1
1p2 = 0;
pl = 1;

1]
=
N

-

p2 = 2;
p3 = 3;
p4 = 4;

retcode = Rockey(RY_CALCULATE3, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)

{
ShowERR(retcode);

return;

}
printf("Calculate Input: pl=1, p2=2, p3=3, p4=4\n");

printf("\n");
printf("Result = 1+2+3+4+1+2+3+4=0x14\n");
printf("Calculate Output: pl=%x, p2=%x, p3=%x, p4=%x\n", pl, p2, p3, pd);

retcode = Rockey(RY_CLOSE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

printf("\n");
getch();

}

8.2.2 Complex Algorithm Application Examples
8.2.2.1 Complex example 1
In Step 27 we first search the dongle and get its hardware ID. Then we use the calculation 1 function in the

program to get the hardware ID again. Compare the two hardware IDs. If they are different the program will be
terminated.

#include <windows.h>

#include <stdio.h>
#include <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)

if (retcode == @) return;
printf("Error Code: %d\n", retcode);

void main()

{
WORD handle[16], pl, p2, p3, p4, retcode;
DWORD findlpl,truelpl;
DWORD 1pl, 1p2;
BYTE buffer[1024];
int i, j;

char cmd[] = "A=E|E,B=F|F,C=G|G,D=H|H";

pl = Oxcd4c;
p2 = Oxc8f8;
p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[@], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);

return;

}
printf("Find Rock: %@8X\n", 1pl);
findlpl=1p1;

retcode = Rockey(RY_OPEN, &handle[0], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;

}

i=1;

while (retcode == 0)
{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &1p2, &pl, &p2, &p3, &p4,
buffer);

if (retcode == ERR_NOMORE) break;

if (retcode)

{
ShowERR(retcode);

return;

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;

}

i++;

printf("Find Rock: %@8X\n", 1lpl);

}
printf("\n");

for (j=0;j<i;j++)
{
/*
pl = 7;
p2 = 0x2121;
p3 = 0;

retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle 7: Pass = %04X Decrease no allow\n", p2);

pl = 0;

strcpy((char*)buffer, cmd);

retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lpl, &1p2, &pl, &p2, &p3, &p4,
buffer);

if (retcode)

{

ShowERR (retcode);

return;
}
printf("Write Arithmetic 1\n");
*/

1p1 =
1p2 =
pl =
p2 =
p3 = 3;

p4 = 4;

retcode = Rockey(RY_CALCULATE1l, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,

buffer);
if (retcode)

{

0;
75
5

I

w N

ShowERR(retcode);
return;

}
printf("Calculate Input: pl=1, p2=2, p3=3, p4=4\n");
printf("Calculate Output: pl=%x, p2=%x, p3=%x, p4=%x\n", pl, p2, p3, p4);

printf("\n");
printf("Moudle 7 : %x\n", p3);
truelpl=MAKELONG(p2,pl);

printf("truelpl : %x\n",truelpl);
if (findlpl==truelpl)

printf("Hello FeiTian!\n");
else
break;

retcode = Rockey(RY_CLOSE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

printf("\n");
getch();

8.2.2.2 Complex example 2

In Step 28 we get the return codes of a seed code with the calculation 2 function. Then we compare these return
codes with the return codes we get with the same seed code at the beginning of the program. If they are different
the program will be terminated.

#tinclude <windows.h>

#tinclude <stdio.h>
#tinclude <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)
{

if (retcode == @) return;
printf("Error Code: %d\n", retcode);

void main()

{
WORD handle[16], pl, p2, p3, p4, retcode;
DWORD 1p1, 1lp2;
BYTE buffer[1024];
WORD rc[4];

int i, j;

char cmdl[] = "A=E|E,B=F|F,C=G|G,D=H|H";

pl = Oxcéd4c;
p2 = Oxc8f8;
p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR (retcode);
return;

}
printf("Find Rock: %08X\n", 1pl);

retcode = Rockey(RY_OPEN, &handle[0], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;
¥
i=1;
while (retcode == 0)
{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &1p2, &pl, &p2, &p3, &p4,
buffer);

if (retcode == ERR_NOMORE) break;

if (retcode)

{
ShowERR(retcode);

return;

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

i++;

printf("Find Rock: %@8X\n", 1lpl);

}

printf("\n");

for (j=0;j<i;j++)
{

1p2 = 0x12345678;
retcode = Rockey(RY_SEED, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;

}

printf(“"Seed: %04X %04X %04X %04X\n", pl, p2, p3, p4);

rc[@] = p1l;

rc[1] = p2;

rc[2] = p3;

rc[3] = p4;

//

pl = 0;

strcpy((char*)buffer, cmdl);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lpl, &1p2, &pl, &p2, &p3, &p4,

buffer);
if (retcode)
{
ShowERR(retcode);
return;
}

printf("Write Arithmetic 2\n");

1p1l = o;

1p2 = 0x12345678;

pl = 1;

p2 = 2;

p3 = 3;

p4 = 4;

retcode = Rockey(RY_CALCULATE2, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,

buffer);

if (retcode)

{
ShowERR(retcode);
return;

printf(“"Calculate Input: pl=1, p2=2, p3=3, pd4=4\n");
printf("Calculate Output: pl=%x, p2=%x, p3=%x, p4=%x\n", pl, p2, p3, p4);

printf("\n");
if(rc[0]==pl && rc[1l]==p2 && rc[2]==p3 && rc[3]==p4)

printf("Hello FeiTian!\n");
else
break;

retcode = Rockey(RY_CLOSE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);

return;

printf("\n");
getch();

}
}

8.2.2.3 Complex example 3

In Step 29 we get the values stored in the 64 modules by using the calculation 3 function. Remember that the
modules may not be read, even with the Advanced passwords. You may write some important data to the
modules or perform some other operations.

#include <windows.h>

#include <stdio.h>
#include <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)
{

if (retcode == @) return;
printf("Error Code: %d\n", retcode);

void main()

WORD handle[16], pl, p2, p3, p4, retcode;
DWORD 1pl, 1p2;

BYTE buffer[1024];

int i, j;

char cmd2[] = "A=E|E,B=F|F,C=G|G,D=H|H";

pl = Oxcd4c;
p2 = Oxc8f8;
p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[@], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);

return;

}
printf("Find Rock: %08X\n", 1lpl);

retcode = Rockey(RY_OPEN, &handle[@], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;
¥
i=1;
while (retcode == 0)
{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &1lp2, &pl, &p2, &p3, &p4,
buffer);

if (retcode == ERR_NOMORE) break;

if (retcode)

{

ShowERR(retcode);
return;

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;

}

i++;

printf("Find Rock: %@8X\n", 1lpl);

}
printf("\n");

for (j=0;j<i;j++)

{
/*
pl = 0;
p2 = 1;
p3 = 0;

retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);

if (retcode)

{
ShowERR(retcode);

return;

}
printf("Set Moudle ©: Pass = %04X Decrease no allow\n", p2);

pl = 1;

p2 = 2;

p3 = 0;

retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);

if (retcode)

{

ShowERR(retcode);

return;

}
printf("Set Moudle 1: Pass = %04X Decrease no allow\n", p2);

pl = 2;
p2 = 3;
p3 = 0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle 2: Pass = %04X Decrease no allow\n", p2);

pl = 3;
p2 = 4;
p3 = 0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

printf("Set Moudle 3: Pass = %04X Decrease no allow\n", p2);
//
*/

pl = 0;
strcpy((char*)buffer, cmd2);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lpl, &1p2, &pl, &p2, &p3, &p4,

buffer);
if (retcode)
{
ShowERR(retcode);
return;
}

printf("Write Arithmetic 3\n");

1pl = o;

1p2 = 0;

pl = 0;

p2 = 0;

p3 = 0;

p4 = 0;

retcode = Rockey(RY_CALCULATE3, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,

buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Calculate Input: pl=0, p2=0, p3=0, p4=0\n");

printf("\n");

printf("Moudle
printf("Moudle
printf("Moudle
printf("Moudle

%x\n",pl);
%x\n",p2);
%x\n",p3);
%x\n",p4);

w N B o

retcode = Rockey(RY_CLOSE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{

ShowERR(retcode);
return;

printf("\n");
getch();

}

8.2.2.4 Complex example 4

In Step 30 we use all the three calculation functions and we write 4 calculation sections to the ROCKEY dongle.
The results of the three calculations are used for additional calculations. Of course you may let ROCKEY perform

much more complex calculations according to your situation.

#tinclude <windows.h>

#tinclude <stdio.h>
#tinclude <conio.h>
#include "Rockey4 ND_32.h"

void ShowERR(WORD retcode)

{
if (retcode == @) return;
printf("Error Code: %d\n", retcode);

void main()

{
WORD handle[16], pl, p2, p3, p4, retcode;
DWORD 1p1, 1lp2;
BYTE buffer[1024];

int i, j;
int t1,t2,t3;

char cmd[] = "H=H"H, A=A*23, F=B*17, A=A+F, A=A+G, A=A<C, A=A~D, B=B"B, C=C~C, D=D~D";
char cmdl[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";

char cmd2[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";

char cmd3[] = "H=H"H,A=A|A, B=B|B, C=C|C,D=A+B,D=D+C";

pl = Oxcéd4c;
p2 = Oxc8f8;
p3 = 0x0799;
p4 = 0xc43b;

retcode = Rockey(RY_FIND, &handle[0], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR (retcode);

return;

}
printf("Find Rock: %@8X\n", 1pl);

retcode = Rockey(RY_OPEN, &handle[©], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);

if (retcode)

{
ShowERR(retcode);
return;
¥
i=1;
while (retcode == 0)
{

retcode = Rockey(RY_FIND_NEXT, &handle[i], &lpl, &1lp2, &pl, &p2, &p3, &p4,
buffer);

if (retcode == ERR_NOMORE) break;

if (retcode)

{
ShowERR(retcode);

return;

retcode = Rockey(RY_OPEN, &handle[i], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;

}

i++;

printf("Find Rock: %@8X\n", 1lpl);

}
printf("\n");
for (j=0;j<i;j++)
{
pl = 7;
p2 = 0x2121;
p3 = 0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);

return;

}
printf("Set Moudle 7: Pass = %04X Decrease no allow\n", p2);

printf("\n");

1p2 = 0x12345678;
retcode = Rockey(RY_SEED, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Seed: %04X %04X %04X %04X\n", pl, p2, p3, p4);
printf("\n");

pl = @;
p2 = 1;
p3 = 0;

retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle ©: Pass = %04X Decrease no allow\n", p2);

pl = 1;
p2 = 2;

p3 = 0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle 1: Pass = %04X Decrease no allow\n", p2);

retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Set Moudle 2: Pass = %04X Decrease no allow\n", p2);

pl = 3;
p2 = 4;
p3 = 0;
retcode = Rockey(RY_SET_MOUDLE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Set Moudle 3: Pass = %04X Decrease no allow\n", p2);
printf("\n");

pl = 0;
strcpy((char*)buffer, cmd);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lpl, &1p2, &pl, &p2, &p3, &p4,

buffer);
if (retcode)
{
ShowERR(retcode);
return;
}

printf("Write Arithmetic 1\n");

1p1l = o;
1p2 = 7;

p4 = oxffff;

retcode = Rockey(RY_CALCULATE1l, &handle[j], &lpl, &1lp2, &pl, &p2, &p3, &p4,

buffer);
if (retcode)
{
ShowERR(retcode);
return;
}

printf("Calculate Input: pl=5, p2=3, p3=1, p4=0xffff\n");

printf("Result = ((5%23 + 3*17 + 0x2121) < 1) ~ Oxffff = OxBC71\n");
printf("Calculate Output: pl=%x, p2=%x, p3=%x, p4=%x\n", pl, p2, p3, pd);
tl=p1l;

pl = 10;
strcpy((char*)buffer, cmdl);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lpl, &1p2, &pl, &p2, &p3, &p4,

buffer);
if (retcode)
{
ShowERR(retcode);
return;
}

printf("Write Arithmetic 2\n");

1pl = 10;

1p2 = 0x12345678;

pl = 1;

p2 = 2;

p3 = 3;

p4 = 4;

retcode = Rockey(RY_CALCULATE2, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,

buffer);

if (retcode)

{
ShowERR(retcode);
return;

}

printf("Calculate Input: pl=1, p2=2, p3=3, p4=4\n");

printf("Result =d@3a + 94d6 + 9629 + 7f54 + 1 + 2 + 3 + 4=0x7b17\n");
printf("Calculate Output: pl=%x, p2=%x, p3=%x, p4=%x\n", pl, p2, p3, p4);
t2=p1l;

pl = 17;
strcpy((char*)buffer, cmd2);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Write Arithmetic 3\n");

1pl = 17;
1p2 = 0;
pl = 1;
p2 = 2;
p3 = 3;
p4 = 4;

retcode = Rockey(RY_CALCULATE3, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;
}
printf("Calculate Input: pl=1, p2=2, p3=3, p4=4\n");
printf("Result = 1+2+3+4+1+2+3+4=0x14\n");
printf("Calculate Output: pl=%x, p2=%x, p3=%x, p4=%x\n", pl, p2, p3, pd);
t3=p1l;

printf("\n");
pl = 24;
strcpy((char*)buffer, cmd3);
retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lpl, &1p2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)
{
ShowERR(retcode);
return;

}
printf("Write Arithmetic \n");

1pl = 24;
1p2 = 7;
pl = t1;
p2 = t2;
p3 = t3;
p4 = 0;

retcode = Rockey(RY_CALCULATE1l, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4,
buffer);
if (retcode)

{
ShowERR(retcode);

return;

printf("Calculate Output: pl=%x, p2=%x, p3=%x, p4=%x\n", pl, p2, p3, pd);

retcode = Rockey(RY_CLOSE, &handle[j], &lpl, &lp2, &pl, &p2, &p3, &p4, buffer);
if (retcode)

{
ShowERR(retcode);
return;
}
printf("\n");
getch();
}
}

8.2.3 Advanced Algorithm Application Examples

In Step 31 we will write the core algorithms or codes of the application to the ROCKEY dongle. Below are three
programs: the original program, the ROCKEY initializing program and the final program for the end users.

The original program:

#tinclude "stdafx.h"
#tinclude "DrawCircle.h"
#tinclude "DrawCircleDoc.h"

#tinclude "DrawCircleView.h"
#include "DrawParamDlg.h"

FEITIAN Rockey4ND User’s Guide

#include "DrawMethodDlg.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS FILE

static char THIS FILE[] = _ FILE ;
#endif

void CDrawCircleView: :DrawCircleMidPoint(CDC *pDC, int iCenterX, int iCenterY, int r)

{
int x=0;
int y=r;
int p=1-r;

TRACE("Origin\n");
CirclePlotPoints(pDC, iCenterX,iCenterY,x,y);
m_lpCircleBuf[0].x

m_lpCircleBuf[@].y
m_nPointCount=1;

X5
Y5

while(x<y)
{
X++;
if(p<9)
{
p+=2*x+1;

}

else

y--,

p+=2*(x-y)+1;
}
TRACE ("%d, (%d,%d);",p,X,¥);
CirclePlotPoints(pDC, iCenterX,iCenterY,x,y);

m_lpCircleBuf[m _nPointCount].x
m_lpCircleBuf[m_nPointCount].y
m_nPointCount++;

X5
ys

}
TRACE("\n");

Initialize dongle:

#include "stdafx.h"

#include <windows.h>
#include "..\inc\Rockey4 ND_32.h"

void ReportErr(WORD wCode)

{
printf("ERROR:%d\n",wCode);

int main(int argc, char* argv[])
{
WORD p1=0xc44c,p2=0xc8f8,p3=0x0799, p4=0xc43b;
DWORD 1p1,1p2;
WORD handle[16];
BYTE buffer[1024];
BYTE cmdstr[] = "B=B|B,B=B+1,B=B*2,B=B+1,A=A+B,C=C-1,C=C*2,B=A-C";
WORD retcode;

retcode = Rockey(RY_FIND,&handle[0],&1pl,&1p2,&pl,&p2,&p3,8&p4,buffer);

if(retcode)

{
ReportErr(retcode);
return 0;

}

printf("Find successfully\n");

retcode = Rockey(RY_OPEN,&handle[0],&1p1,&1p2,&pl,&p2,&p3,8&p4,buffer);

if(retcode)

{
ReportErr(retcode);
return 0;

}

printf("Open successfully\n");

pl = 10,

retcode =
Rockey(RY_WRITE_ARITHMETIC,&handle[0],&1pl,&1p2,&pl,&p2,&p3,8&p4,cmdstr);
if(retcode)
{
ReportErr(retcode);
return 0;

}

printf("Write arithmetirc successfully\n");

retcode = Rockey(RY_CLOSE,&handle[0],&1p1,&1p2,&p1,&p2,&p3,8&p4,buffer);

return 0;

The final program for the end users:

#include "stdafx.h"

#include "DrawCircle.h"

#include "DrawCircleDoc.h"
#include "DrawCircleView.h"
#include "DrawParamDlg.h"

#include "DrawMethodDlg.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS FILE

static char THIS FILE[] = _ FILE ;
#endif

WORD pl=0xc44c,p2=0xc8f8,p3=0x0799,p4=0xc43b;
DWORD 1p1,1p2;

WORD handle[16];

BYTE buffer[1024];

void CDrawCircleView: :DrawCircleMidPoint_Rockey(CDC *pDC, int iCenterX, int iCentery,
int r)
{

int x=0;

int y=r;

int p=1-r;

int seed=0;

short p1,p2,p3,p4;

CirclePlotPoints(pDC, iCenterX,iCenterY,x,y);
TRACE ("Hardware\n");

m _1lpCircleBuf[@].x = Xx;

m_lpCircleBuf[@0].y = y;
m_nPointCount=1;

while(x<y)
{
Pl = p;
P2 = X;
p3 =y;
p4 = seed;

if(!RunRockey ((WORD&)p1, (WORD&)p2, (WORD&)p3, (WORD&)p4))

{
// AfxMessageBox("Runtime error");
break;
}
if(p<9)
{
p = pl;
}
else
{
p = p2;
y--5
}
X++;

TRACE("%d, (%d,%d);",p,X,Y);
CirclePlotPoints(pDC, iCenterX,iCenterY,x,y);

m_lpCircleBuf[m _nPointCount].x
m_lpCircleBuf[m_nPointCount].y
m_nPointCount++;

X5
ys

¥
TRACE("\n");

FEITIAN Rockey4ND User’s Guide

BOOL CDrawCircleView: :RunRockey(WORD &A, WORD &B, WORD &C, WORD &D)

{
WORD retcode;

1pl = 10;
retcode = Rockey(RY_CALCULATE1,&handle[0],&1p1,&1p2,8&A,&B,&C,&D,buffer);

if(retcode)
return FALSE;
else
return TRUE;

Note: ROCKEYAND has as many as 128 instructions. Developers do not need to consider the start and end
attributes of an algorithm. ROCKEY will automatically assign a Start/End attribute to the instructions. In practice
this means that if the developer writes a two-instruction algorithm to the User Algorithm Zone (UAZ), and then a
three instruction algorithm, the result will not be a single five instruction algorithm. Algorithms that begin with

“Null” or “E” will produce unpredictable results.

8.3 Tips

1. Make randomized calls to the ROCKEY API - Randomly scatter calls to the ROCKEY API from within your
application. Calls made to the API from time-to-time will make it very difficult to mimic the behavior of the
protection method or hack the application.

2. Use dynamic information with the seed code function -The use of dynamic information with the seed code
function, such as system date, makes the protection method stronger because the results can change with the
input and calculation.

3. Do not repeatedly use the same protection method in your application -If you use the same protection method
several times in your application it will be easier for the cracker to find the rule and crack your application.
Protection methods that are complex and rely on a number of different checks and calculations are the most
difficult to crack.

4. Encrypt the character string and data — In “Step 18” of this document we showed an encryption method using
information stored inside the dongle. Encrypting a character string in the manner described is a strong method
because a failure to properly decrypt the string can cause the application to terminate or take other actions in
accordance with the licensing agreement.

FEITIAN

Rockey4ND User’s Guide

5. Use API encryption and Envelope encryption together — The strongest protection method will have the

developer first using a complex and dynamic implementation of the ROCKEY API, and then protecting this new file
with the ROCKEY Envelope.

Keep the end user environment in mind when you design the software protection solution. You should flexibly
adopt the methods suggested here within the limitations and objectives of your environment and licensing policy.

FEITIAN Rockey4ND User’s Guide

Chapter 9. FAQs

Some frequently asked questions about ROCKEY4ND are listed in this chapter. You may find the solution to your
problems with the use of the ROCKEY4ND dongle hereinafter.

9.1 Typical Solutions to Some Problems

B Test the dongle using Rockey4ND_editor under Editor directory.

B Replace the current version of the driver with the newest version, which can be downloaded from Feitian

website. The website will be updated between whiles.
B Check if the problem persists after using another computer with your device.

B Check if your computer has been attacked by a virus or the like, which may block the program you are using.

9.2 FAQs

9.2.1 What is an evaluation kit?

The evaluation kit is designed for developers to evaluate the dongle product. It usually includes a package,
documentation, a CD-ROM, and a dongle. The dongle is the same as the formal dongle, except that the access
password for it is public. If customers want to purchase the product after evaluation, a dongle with a unique

password will be provided for security consideration.

9.2.2 What is the order number?

The order number is a reference number for management purpose in fact. It does not associate with the

passwords of the dongle directly.

9.2.3 Is it possible that others can buy a dongle as same as mine?

That is impossible. The passwords of the dongle of each customer are different. We keep the record of each

customer. We can sign a security agreement with you if necessary. We will deliver the dongle to you as required.

9.2.4 Are the passwords of ROCKEY4ND dongle secure enough?

Yes, they are very secure. They include 4 passwords divided into 2 levels. Each is 16 bits in length. The 1% level
includes 2 basic passwords for basic operations on the dongle. The 2" Jevel passwords are dedicated advanced

passwords provided to developers for controlling writing to the dongle and defining encryption algorithms. These

FEITIAN Rockey4ND User’s Guide

2 passwords must not appear in the software delivered to end users. If the advanced passwords are entered in
error and the special memory has been written 4 times, the dongle will be locked for 2 seconds. No operations

can be performed during the 2 seconds. This measure prevents attempts of the passwords by attackers.

9.2.5 What are same-numbered dongles?

The dongles have the same order number. In other words, they share the same passwords. Each copy of the
software is delivered with a dongle to end users. Since all the delivered dongles have the same number, devopers

do not need to re-compile each copy of the software.

9.2.6 What can | do if | forget the passwords of the dongle?

Use another dongle. Or, you must prove that you ordered that dongle before. For details, consult our post-sales.

9.2.7 Is it true that a data sharer can be used to share a dongle?

The data sharer can be prevented if you do as follows: generate a random number at the beginning of the
program and store it at a fixed address in the memory of the dongle; and verify if the data at that address is equal
to the random number at runtime of the program. If the program is also running on another computer, which

works with the dongle, a different random number must have been written to that address.

9.2.8 Will it slow down the running of software to write a complex algorithm to the
ROCKEY4ND dongle?

No. The difference between the time consumed by the simplest algorithm and the time consumed by the most
compliex algorithm is merely several tens of milliseconds. If the complex algorithm is not invoked frequently, you

cannot perceive the slowness.

9.2.9 What is the problem if my USB dongle is recognized as Unknown Device?
This problem occurs occasionally. Generally, your device is not attached properly to the computer, or some
interference exists. Remove your dongle and try to attach it again.

9.2.10 Why can’t | see the USB device in Device Manager when | use the dongle
with a Windows 98 computer which has a USB port?

Maybe the USB supporting option is disabled in BIOS.

9.2.11 How can | update the software of the dongle?

If you are a testing user, you will be sent the last-minute updates. Otherwise, you can go to our website

(http://www.FTsafe.com) to get the latest DK.

http://www.ftsafe.com/�

9.2.12 | was prompted “Rockey4ND.dll not found” when protecting FoxPro and VB
programs by calling APIs. What is the problem?

Although Rockey4ND.dll is present under current directory, you must copy it to a system directory because FoxPro
and VB programs find the dynamic-linking libraries only in system directory.

FEITIAN Rockey4ND User’s Guide

Appendix A: Contents of SDK Directory

Directory Description
Setup.exe Installer
Flielist.txt List of files
Api32 32-bit APIs
Api64 64-bit APIs
Docs User manual(s)
Driver For Win98 Driver for Windows 98 SE
Include Header files
NetRockey Network dongle DK
Samples Sample programs
Utilities Dongle Editor and Envelope Encryptor

FEITIAN Rockey4ND User’s Guide

Appendix B: Performance Comparison of Dongles

Feitian is always dedicated to provide products with high stability, integrity, and quality, and make continuous
improvements. Developers can get free trial offerings from us. You are appreciated if you can complete the

following form and send it to us.

Performance Comparison of Dongles

Items for comparison ROCKEY4ND | Competing
Product
Y N ?

USB interface device

Operating voltage as low as 2.2v

Passwords and ID number burned into CPU, even manufacturer cannot

change them

Memory read/write unit N,

Unique hardware ID for each dongle

Able to work in parallel with dongles of the same or different kind without | +

any problems

Able to work in series for same-numbered dongles N,

Good adaptability, works normally even when a printer is connected N,

No conflicts even when printing N,

Support for direct envelope encryption for executable files, without the |

need of source code of the software

Able to prevent the track and crack by debugging tools N,

Customizable onboard algorithms N,

Encrypted software can word under Windows 98 SE/2000/XP/2003 N,

2-level password control, developer passwords do not appear in user | v

software

Mass storage CPU program memory N

1000 bytes or more user memory N,

Onboard time gate preventing track by software N,

Able to encrypt a set of software programs/ modules N,

	Rockey4ND
	User’s Guide
	Introduction
	1.1 About ROCKEY4ND
	1.2 Software Protection Mechanism of ROCKEY4ND
	1.3 Hardware Configuration
	1.4 ROCKEY4ND Benefits
	1.5 How to Choose a Right Software Protection Solution

	ROCKEY4ND Hardware Features
	2.1 ROCKEY4ND Internal Structure
	2.2 ROCKEY4ND Hardware Interface

	Installing ROCKEY4ND SDK
	3.1 Installing SDK
	3.2 Uninstalling SDK

	Basic Concepts
	4.1 Passwords
	4.2 Order Code
	4.3 Hardware ID
	4.4 User Data Zone
	4.5 Module Zone
	4.6 User Algorithm Zone
	4.7 User ID
	4.8 Random Number
	4.9 Seed and Return Values

	ROCKEY4ND Editor
	Brief Introduction
	Operation
	Save Work

	ROCKEY4ND Envelope Encryption
	ROCKEY4ND APIs
	ROCKEY4ND Function Prototype and Definition
	ROCKEY4ND API Services
	Error Codes
	Basic Application Examples
	Advanced Application Examples

	ROCKEY4ND Hardware Algorithms
	ROCKEY User Defined Algorithm Introduction
	User Defined Algorithm Examples
	Tips

	FAQs
	Typical Solutions to Some Problems
	FAQs
	What is an evaluation kit?
	What is the order number?
	Is it possible that others can buy a dongle as same as mine?
	Are the passwords of ROCKEY4ND dongle secure enough?
	What are same-numbered dongles?
	What can I do if I forget the passwords of the dongle?
	Is it true that a data sharer can be used to share a dongle?
	Will it slow down the running of software to write a complex algorithm to the ROCKEY4ND dongle?
	What is the problem if my USB dongle is recognized as Unknown Device?
	Why can’t I see the USB device in Device Manager when I use the dongle with a Windows 98 computer which has a USB port?
	How can I update the software of the dongle?
	I was prompted “Rockey4ND.dll not found” when protecting FoxPro and VB programs by calling APIs. What is the problem?
	Although Rockey4ND.dll is present under current directory, you must copy it to a system directory because FoxPro and VB programs find the dynamic-linking libraries only in system directory. Appendix A: Contents of SDK Directory
	Appendix B: Performance Comparison of Dongles

